188 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO. 2, FEBRUARY 1995

ances match the actual errors. The results show that it is possible to
achieve subpixel accuracy in the range of 0.18 pixel RMS error.
Compared to the 0.3-0.4 pixel RMS error achieved in [5] this is a
significant improvement.

Note that the same results are valid for cases B and C, also, be-
cause the optimal target and noise pixel detection probabilities are
the same for the first three cases. In [5], the pixel RMS error depends
on detection threshold levels and, hence, target and noise pixel de-
tection probabilities, whereas in the present work, the optimal
thresholds obtained using a priori information give rise to almost the same
pixel detection probabilities irrespective of the initial threshold levels.

For case D the real images were obtained by a FPA based plati-
num-silicide camera (resolution 256 x256) in infrared light. The
256 X256 images were reduced to 64 x 64, with two frames shown
in Fig. 2. The images show two cars moving from left to right during
daytime. The marked car (on the left) was chosen for tracking. The
parameters of the segmentation algorithm are shown in the last row of
Tables 1 and 2.

TABLE V.
FILTER ESTIMATED RMS ERRORS.

Case Position RMS - [ Velocity RMS
Error Error
Present technique 0.2 0.031
Previous technique 0.4 0.090

Using the PDAF, the estimated values of the centroid position and
velocity of the target along with the estimated accuracies are given in
Fig. 3. The RMS errors yielded by the tracking filter using the opti-
mal layering technique are compared with [5] in Table V. The filter-
calculated RMS estimation errors were 0.2 pixel for each coordinate
in position and 0.031 pixel/frame in velocity, whereas in [5] the po-
sition and velocity RMS errors were 0.4 and 0.09, respectively. Since
the ground truth is not known, in order to check the filter’s consis-
tency (validity of the filter-calculated estimation accuracy), the 10-
calculated and was found to be 2.24, which is within the 95% chi-
square limits [0.96, 3.14] based on
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Thus, the filter-calculated accuracies are reliable.

These results show that, in spite of the non-white and non-
Gaussian noise in the image, the method was remarkably successful
for this real image.
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How Far 3D Shapes Can Be Understood
from 2D Silhouettes

Aldo Laurentini

Abstract— Each 2D silhouette of a 3D unknown object O constrains O
inside the volume obtained by back-projecting the silhouette from the
corresponding viewpoint. A set of silhouettes specifies a boundary vol-
ume R, obtained by intersecting the volumes due to each silhouette. R
more or less closely approximates O, depending on the viewpoints and
the object itself. This approach to the reconstruction of 3D objects is
usually referred to as volume intersection. This correspondence ad-
dresses the problem of inferring the shape of the unknown object O from
the reconstructed object R. For doing this, we divide the points of the
surface of R into hard points, which belong to the surface of any possible
object originating R, and soft points, which may or may not belong to
O. We consider two cases: In the first case R is the closest approxima-
tion of O which can be obtained from its silhouettes, i.e,, its visual hull;
in the second case, R is a generic reconstructed object. In both cases we
supply necessary and sufficient conditions for a point to be hard and give
rules for computing the hard surfaces.

Index Terms— Computer vision, 3D object reconstruction, 2D images,
volume intersection, shape from silhouettes, visual hull.

1. INTRODUCTION

Reconstructing 3D shapes from 2D images is an important area of
research in computer vision. The silhouettes of a 3D object are im-
portant sources of shape information, which can usually be obtained
from intensity images with simple and robust algorithms. The word
silhouette indicates the region of a 2D image of an object O which
contains the projections of the visible points of O.

If no a priori knowledge about O is available, all the information
provided by a silhouette S; is that O must lie in the solid region of
space C; obtained by back-projecting S; from the corresponding
viewpoint V;. If n silhouettes are available, they constrain O within
the volume R,;:

Many object reconstruction algorithms based on this idea have
been presented [1]-[13]. They are usually referred to as volume inter-
section (VI) algorithms (Fig. 1) and compute from a set of silhouettes
a more or less precise approximation of R. Several VI algorithms
specify the reconstructed object R as an octree ([2], [5], [1 1]). Other
representations have also been used ({1], [8]). The main feature of
this popular approach is that it does not compel us to find correspon-
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Fig. 1. The volume intersection approach for reconstructing 3D objects.

dences between multiple images. For the purpose of this paper we as-
sume that VI is an ideal operation able to exactly produce R.

The regions C; are solid cones for perspective projection, solid
cylinders for parallel projections. In both cases the regions are
bounded by ruled surfaces, referred to as the circumscribed cones or
cylinders of O. In the following, for simplicity we will speak of
cones, conical surfaces, and viewpoints referring both to perspective
and parallel projections.

The bounding volume R more or less closely approximates O.
Obviously, the final goal of VI is the shape of the unknown object.
Thus, a fundamental problem raised by this technique is to infer as
far as possible the shape of O from the reconstructed volume R. For
dealing with this problem we will use the recently introduced geo-
metric concept of visual hull of an object.

This correspondence is organized as follows. In Section II we
briefly recall the visual hull idea. In Section III we tackle the problem
of inferring the shape of the unknown object in the case of optimal
reconstruction, that is starting from the closest approximation of O
which can be obtained from its silhouettes. In Section IV we find out
which shape information is provided by a generic reconstructed vol-
ume R, or, in other words, from a generic set of silhouettes. In Sec-
tion V we summarize the results obtained and present concluding re-
marks.

II. THE VISUAL HULL OF A 3D OBJECT

The visual hull is a geometric entity useful for dealing with silhou-
ette-based image understanding [14], [15]. Here we summarize the
relevant items of [15], to which the reader is referred for further details.

Definition 1. The visual hull VH(O, V) of an object O relative to
a viewing region V is a region of E* such that, for each point
P e VH(O,V) and each viewpoint V € V, the half line starting at
V and passing through P contains at least a point of Q.

From this definition it follows that:

Proposition 1. VH (O, V) is the closest approximation of O that
can be obtained using VI techniques with viewpointsV € V.

Thus, an object O can be exactly reconstructed by VI using sil-
houettes observed from a viewing region V if and only if it is O =
VH (O, V).

It can be shown that there is a unique visual hull, the external vis-
ual hull, or simply the visual hull VH(O), for all viewing regions
which completely enclose O without entering its convex hull. This is
the case of main practical interest, since usually the object to be rec-
ognized or reconstructed lies at some distance and can assume any
orientation with respect to the viewpoints. The visual hull relative to
V=E>-0 is defined as the internal visual hull, and denoted
IVH(O). Convex hull, visual hull, internal visual hull, and O are re-
lated by the following inequalities:

Proposition 2. O < IVH(O) < VH(O) < CH(O).
Algorithms for computing VH(O) and IVH(O) have been given
for polygonal sets, polyhedra [15], and solids of revolution [14].

III. INFERRING THE SHAPE OF THE UNKNOWN OBJECT IN THE
OPTIMAL CASE

The purpose of this section is to investigate which information is
supplied about the unknown object O by the VI technique in the op-
timal case, that is, when the closest possible approximation of O has
been reconstructed from its silhouettes. Since the visual hull is the
closest approximation of O that we can construct from its silhouettes,
we address the following problem: What can be inferred about the
shape of an object from its visual hull? This is the inverse problem of
finding the visual hull of an object.

The preliminary discussion of a simple example will provide us
with some insight into the matter. Various objects with the same vis-
ual hull, a cube, are shown in Fig. 2. The objects are a finite sample
of an infinite set of silhouette-equivalent objects, ranging in volume
from the cube itself to zero-volume, origami-like objects like that
shown in Fig. 2(e). All these objects must not exceed the bounding
cube, but what else can be inferred about their shape? An intuitive
analysis shows that:

o All these objects share the 12 edges of the cube with the sur-
face of the visual hull.

e The remaining surface of these objects can take any shape in-
side the cube, as long as no line passes through the cube with-
out intersecting this surface (this does not mean that these sur-
faces must be connected).

aslaughigu

Fig. 2. All objects (a), (b), (c), (d), and (e) have the same visual hull, coinci-
dent with object (a). Object (e) is origami-like.

The example shows that, in general, using the information pro-
vided by the best reconstructable object, we are unable to completely
infer the real shape of the unknown object. However, analyzing the
visual hull of Fig. 2, we have seen that some points of its surface
(viz., the edges) are also points of the surface of any possible object
O originating on the visual hull, and other points (viz., the interior
points of the faces) may or may not belong to O. This leads to the
following general definition:

Definition 2. Let P be a point of the surface of a visual hull VH. P
will be specified as:

e a hard point if it also belongs to the surface of any pos-
sible object O originating VH
¢ a soft point otherwise.

In other words, a soft point may or may not belong to the surface
of O without for that reason affecting the visual hull. Now, the prob-
lem is the following: In general, which points of the surface of a vis-
ual hull are hard and which are soft?

Let us recall that [15]:

Proposition 3. A point P belongs to VH(O) if and and only if any



190

line passing through P shares at least a point with O.
On the basis of this statement, the following theorem can be dem-
onstrated:

Proposition 4. A necessary and sufficient condition for a point P
belonging to the surface of a visual hull VH(O) to be hard is that at
least one line L passes through P without intersecting VH(O) at any
other point (Fig. 3).

Fig. 3. A necessary and sufficient condition for a point P of the surface of
VH(O) to belong to O. L does not intersect either VH(O) or, therefore, O at
any other point.

Proof. Let us show that the condition is sufficient. Proposition 3
states that every line passing through a point P of the visual hull must
share at least a point with O. If line L shares only point P with the
visual hull, the point which line L must share with O is P itself since
0 is enclosed by the visual hull (see Proposition 2).

Let us show that the condition is necessary. This is equivalent to
showing that a point P which does not satisfy the condition is soft. A
line L through P which does not satisfy the condition shares with
VH(O) at least one other point Q.. We can assume, without affecting
the visual hull, that for each line L the point Qp, belongs to O. With
this assumption, P satisfies the condition of Proposition 3, and be-
longs therefore to VH(O), whether it belongs to O or not.

By using Proposition 4 we are able (at least in principle) to divide
the surface of the visual hull into a hard part, which is coincident
with the surface of the original object, and a soft part, which is only
an outer bound for O. In other words, we are able to find the part of
the visual hull where unreconstructable concavities may lie. Let us
observe that, in spite of its name, volume intersection only provides
precise information on the surface of the unknown object.

Another general feature of the object inferred from the visual hull
should be emphasized: we call it the opaqueness property. It states
that, even if the surface of the unknown object O can assume many
different shapes within the boundary of the soft surface of the visual
hull, no visual ray can cross a soft surface without intersecting 0.

We will now show how Proposition 4 can be used for obtaining
the hard surfaces for some types of visual hull.

A. Polyhedral Surfaces

Polyhedral visual hulls can be originated by polyhedral objects,
although some polyhedra do not yield polyhedral visual hulls (see
[15]). In this subsection we discuss how to determine the hard points
of a polyhedral surface. It is easy to see that:

Proposition 5. The interior points of a planar face of a visual hull
are soft. (Formal proofs of the statements of this section can be found
in [17}.)

Obviously, Proposition 5 holds for any kind of visual hull, not
only polyhedra. From this proposition it follows that only the edges
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of a polyhedral surface can consist of hard points. Let us consider
concave edges. It can be shown that:

Proposition 6. Any interior point of a concave edge of a polyhe-
dral surface of a visual hull is soft (see [17])

In conclusion, to find the hard edges we need to consider only the
convex edges. This task is made easier by the following proposition:

— Soft edges
— Hard edges

Fig. 4. A polyhedral visual hull and is hard and soft edges.

P e
(a) @ (b) (c)

=== Soft concave edges —— Hurd edges
— Soft convex edges

Fig. 5. The visual hull (b) of object (a) has three soft convex edges. A visual
hull (c) where two convex edges are partially hard.

Proposition 7. A sufficient condition for a (convex) edge of a
polyhedral surface of a visual hull VH to be hard is that it also be an
edge of the convex hull of VH (see [17]).

The convex hull of a polyhedron with n vertices can be computed
in time O(nlogn) [16]. Let us consider some simple examples.
Proposition 7 allows us to immediately find the 12 hard edges of the
cubical visual hull of Fig. 2, and all but four (e, €,, €3, €4) of the hard
edges of the object in Fig. 4. In this case, it is easy to verify by in-
spection that all convex edges are hard. However, in general, not
every convex edge is hard, as can be verified by inspecting the object
in Fig. 5(a). The visual hull of this object (Fig. 5(b)) has three soft
convex edges. If we admit exceptional alignment conditions, a con-
vex edge might be only partially hard, as for the visual hull shown in
Fig. 5(c). The underlying object is equal to that shown in Fig. 5(a),
except for a triangular hole in the right wall. In this case, there are
lines passing through E,, and Ep, and the triangular hole which satisfy
the condition of Proposition 4, and, therefore, Ejy, and Ey, are hard.

An algorithm for computing in O(n®) time all hard edges or their
hard parts is presented in the Appendix. It is opportune to remark that
it implies perfect geometry, since it requires checking whether an
edge exactly belongs to a planar surface. It is clear that practical al-
gorithms should make allowance for errors relative to the exact posi-
tion of the edges.
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B. Curved Surfaces

Let us consider a non-planar surface of a visual hull. The follow-
ing proposition holds:

Proposition 8. Let P be a point belonging to a non-planar surface
of a visual hull VH. A sufficient condition for P to be hard is that P
also belongs to the surface of the convex hull of VH (see [17]).

This sufficient condition, together with the previous results, makes
it possible to easily find the hard part of many visual hulls, for in-
stance the dice-shaped visual hull of Fig. 6,

Soft surface

Hard surface

Fig. 6. The hard and soft surfaces of a dice-shaped visual hull.

Let us assume now that the visual hull has a smooth curved sur-
face, such that a plane tangent at each point of the surface can be
found. In principle, for determining whether a point P is hard or soft,
we can proceed as follows. Let p be the plane tangent at P to VH(O).
This plane contains all the lines passing through P which are possible
candidates for satisfying the condition of Proposition 4. The problem
is therefore reduced to the following: Find the intersection I of p and
VH(O) (excluding the point P itself) and verify whether there are
lines passing through P which do not intersect I. This is the same
problem as verifying whether P is enclosed by VH(I), the 2D visual
hull of I, or not.

It is beyond the scope of this paper to discuss any further the com-
putation of the hard part of curved visual hulls. One reason is that it
would require a deeper knowledge about the geometry of the visual
hull of general curved objects, a subject which is currently under in-
vestigation. Another reason is that such algorithms would be mainly
of theoretical interest. In fact, it is clear that visual hulls with curved
surfaces require infinite intersections to be constructed, except for
those special objects whose surface consists of conical and cylindri-
cal patches.

IV. INFERRING THE SHAPE FROM A GENERIC SET
OF SILHOUETTES

The discussion so far presented about the unknown object O im-
plies the knowledge of VH(O), and stands as the most favorable case
for inferring the shape of O. In practice, if, in addition to the silthou-
ettes no other information about O is available, we may be unable to
obtain the visual hull of an object. An inconvenient, but nevertheless
likely, situation is that we do not know whether the object R obtained
by volume intersection is the visual hull or not. In this section we
will find out which information about O is provided by a generic ob-
ject R constructed with VI. In other words, we discuss the shape of a
3D object when a generic set of its silhouettes is known.

Let us first consider the simple case of Fig. 7. From the three
square silhouettes S,, Sy, and S,, obtained with viewing directions
parallel to the coordinate axes, we reconstruct a cubic volume R, the
same object considered in the previous section for an example of op-
timal reconstruction. It is clear that there are infinite objects enclosed
by this volume which are able to produce the same three silhouettes.

Fig. 7. The volume R constructed from the square silhouettes S, Sy, and S.,
obtained with viewing directions parallel to the coordinate axes.

Fig. 8. Three polyhedra (a) and three zero-volume, planar face objects (b)
which may yield the silhouettes Sy, Sy, and S, of Fig. 7.

Fig. 9. The intersection of the three origami-like objects of Fig. 8(b) and the
top face of the reconstructed cube.

Among them there are many subclasses with infinite members, such
as convex polyhedra, and origami-like, planar face objects. Three
objects of the former class and three of the latter are shown in Fig.
8(a) and (b) respectively. Also, objects with curved faces can produce
the same silhouettes. In terms of visual hull, the object R is the visual
hull VH(O, Z) of the unknown object O relative to a viewing region
Z consisting of the three ideal points of the coordinate axes, and
therefore is larger than or equal to VH(O).

Obviously, we expect a generic reconstructed object to supply less
information than the same object considered as a visual hull. We
have seen in the previous section that all the edges of a cubic visual
hull are hard. Let us assume a definition of hard and soft points for a
generic reconstructed R equal to that given for the visual hull. We
will find that no hard point exists on the surface of the reconstructed
cube of Fig. 7. In fact, consider the edges that the three objects in
Fig. 8(b) share with the top face of the reconstructed cube (Fig. 9). It
is easy to verify that no point on this face is shared by the edges of
the three objects. Since hard points must be shared by all originating
objects, no hard points exist on the top face of the cube. It is easily
seen that the same statement holds for the other faces. In conclusion,
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Fig. 10. An object yielding the same square silhouettes Sx, Sy,and S; of Fig. 9.

Fig. 11. Algorithm VI reduces the surface of the circumscribed cone relative
to V to the surface strip ST(V), which contains the curve Cy belonging to O.

in this case we are unable to find any point of the surface of the un-
known object.

From the example, we can derive another important difference
from the ideal case discussed in the previous section. It is easy to see
that the opaqueness property does not hold for objects originating a
generic R. In fact, let us consider the object shown in Fig. 10. It does
not have the opaqueness property, but it produces the square silhou-
ettes S,, Sy, and S, as the objects of Fig. 8, since the rectanguiar hole
passing through the object is sufficiently small and skew with respect
to the viewing direction parallel to the x axis.

Let us now address the following problems: In general, can there
be hard points on the surface of a reconstructed object? And, if this
were the case, how could we find them? To answer these questions,
let us consider the reconstruction of generic object O (Fig. 11). The
circumscribed cone starting at the viewpoint V is tangent to O along
a curve Cy, which therefore is shared by O and the surface of the
cone. The curve Cy shown in the figure is continuous, but in general
it may have discontinuities. In addition, for exceptional alignment
conditions, a half-line of the circumscribed cone may share multiple
points and even segments with O. For instance, this happens when
the viewpoint lies in a plane supporting a planar face of O. However,
for simplicity, we will refer to the points shared by O and the circum-
scribed cone relative to the viewpoint V as the curve Cy.

While the VI algorithm is in progress, parts of the conical volume
with vertex V are cut away as well as parts of its surface. However, it
is clear that in this process no point of the curve Cy can lie on the
discarded surface, since no point belonging to O can be removed by
VI. In conclusion, the whole curve Cy must persist on the surface of
the reconstructed object R after any number of intersections. It will
lie on a strip of variable width which is what is left of the original
circumscribed cone relative to V. Let us indicate this strip as ST(V)
(Fig. 11). The following main theorem holds:

Proposition 9. Let P be a point of the surface of an object R re-
constructed with the VI technique. A necessary and sufficient condi-

Cvk=ST(Vy)

Fig. 12. How a hard line Cvk can be generated.

T(Vi)

Vi

Fig. 13. How to generate a hard point Py on a smooth surface.

tion for P to be hard is that the boundaries of one? strip ST(V) to
which it belongs be coincident at P.

In other words, in order to produce hard points the strip must have
zero width (see [17] for a formal proof). This theorem gives us a full
understanding of the relation between the reconstructed object R and
the unknown object O. To summarize the previous discussion: The
surface of any reconstructed object consists of a number of strips
ST(V,), one for each viewpoint V;. On each strip ST(V)) there is a
curve Cy consisting of points of the unknown object O, but, unfortu-
nately, if the strip has a certain width, we are not able to locate Cy on
the strip and therefore all the points of the strip are soft. The only
case in which we are able to locate hard points of the surface of R is
when the course of the curve Cy is constrained by a strip of zero width.

An important consequence is that, if we consider objects R recon-
structed with a finite number of intersections, and thus with a finite
number of strips, it is not possible to find hard surfaces of R, but only
hard points or, at most, hard lines. Let us recall that the visual hull is
also able to supply hard surfaces: this is not surprising since these are
curved surfaces which require an infinite number of zero-width strips
for their full description.

Let us investigate now which kind of surface of O can produce
hard lines. A hard line results in situations like that shown in Fig. 12,
where the intersection Cyy of the circumscribed cones relative to V;
and V; also lies on the circumscribed cone relative to V,, and there-
fore is coincident with the strip ST(V,). From the figure it is easy to
see that hard lines must be creases of the surface, that is lines where
there is a discontinuity of the surface’s normal. It also follows that on
a smooth surface it is possible to find only hard points and not hard
lines. These hard points can be generated by the intersection of two
strips, as shown in Fig. 13.

Unlike Proposition 4 of Section IlI. Proposition 9 is constructive,
and can be directly used for computing hard points and lines. Actu-
ally, they can simply be obtained as side-products of the VI algo-
rithm. The rest of this section is devoted to some example of compu-
tation of hard points and lines.

2 As we will see later, more than one strip can share a hard point.
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oo ST(Ye) ;

g

Fig. 14. The strip relative to the point at infinity of the axis y(a), and a tetra-
hedron where Lx, Ly, and Lz overlap (b).

{©

Wl srv, STV Wl STV o Hard Points
Fig. 16. The strip relative to Vy. (a); the strips relative to V. and V,, (b); the
hard points (c).

(b)

J\I/x-
3 ST(Vy--)

Fig. 18. The strip relative to Vy_ (a) and that relative to Vy. (b), which has
zero width and consists therefore of hard points.

ST(Vy)

Consider again the cube of Fig. 7, obtained from three square sil-
houettes. Inspecting some possible generating objects has shown that
the surface of the cube has no hard points. It is interesting to obtain
the same result by using Proposition 9. Let us consider the strip
ST(Y), originated by the projection along the y axis (see Fig.
14(a)). The strip has the same non-zero width everywhere, and
therefore all the points on it are soft. The same conclusion holds for
the two strips originated by the viewing directions along x and z. Ob-
serve that at each face of the cube two strips overlap, and therefore on
each face there are two curves Cy. This explains why the objects
shown in Fig. 9 share with each square face of the cube at least two
arcs joining the two pairs of opposite edges of the face. Actually,
only one arc, if it joins two opposite vertices, is sufficient, as in the
case of the tetrahedron shown in Fig. 14(b). In this case, the curves
Cx, Cy, and C; relative to the three viewing directions overlap at the
edges of the tetrahedron.

Let us now consider the volume R in Fig. 15. It has been con-
structed by back-projecting six equal square silhouettes from six
viewpoints V_,V,,, Vy_,Vy+, V,., and V,,, lying on the coordinate
axes at the same distance from the origin. For simplicity, in Fig. 15
only the silhouette relative to one of these points, namely V, , is

shown. In Fig. 16(a) the visible part of the strip ST(V,.) is high-

lighted. In this case the boundaries of the strip overlap at four points,

Fig. 15. R is generated by six equal square silhouettes obtained from view-
points lying on the coordinate axes at the same distance from the origin.

Fig. 17. R modified according to the sithouette obtained from Vy".

which are therefore hard points. Considering the strips relative to the
other viewpoints, it is easy to find that there are eight hard points in
all (Fig. 16(c)). Observe that in this case three strips overlap at each
hard point. In Fig. 16(b) the three strips relative to the viewpoints
Vy_, V,., and V_, are shown.

Let us add another viewpoint Vy__ on the y axis at a distance from
the origin greater than that of V,.. The silhouette relative to this point

is subject to some constraints. It must contain the projections of the
eight hard points. We also have an outer bound for the silhouette,
given by the outline of the object already obtained. Let us assume a
silhouette equal to the largest square formed by the projections of the
hard points, which satisfies the constraints. Intersecting the new cone
and the previous volume we obtain the object shown in Fig. 17.

In Fig. 18(a) we show the new strip ST(Vy“), which reduces the

bounding volume but does not supply any new information on the
hard points
On the contrary, the whole strip ST(V, ) relative to the old view-

point on the y axis has been reduced to zero width by the new cone,
so that we find the four hard segments shown in Fig. 18(b).

V. SUMMARY

We have addressed the problem of inferring the shape of a 3D
object O from its 2D silhouettes, or, which is equivalent, from the
bounding volume R reconstructed using the volume intersection
technique. We have divided the points lying on the surface of R into
hard points, which also belong to the surface of any possible O, and
soft points, which are only an outer bound for O. First, we have con-
sidered the limit case of optimal reconstruction, when the closest
possible approximation of the object, its visual hull, has been ob-
tained. We have given a necessary and sufficient condition for a point
to be hard, and we have shown how to compute the hard points for
some categories of objects.

Since in practice we could be unable to obtain the visual hull of an
object or to find out if the reconstructed object is the visual hull or
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not, we have also addressed the problem of finding the hard points
for a generic reconstructed object. Also, in this case, we have given a
necessary and sufficient condition for a point to be hard. This condi-
tion is a constructive one, and is directly suited for the computation
of the hard points.

It has also been shown that when, in theory, a reconstructed visual
hull can also supply hard surfaces, a generic reconstructed object is
able to supply only hard points or hard lines.

Future work will be aimed at using the results presented for con-
structing an active, object-specific volume intersection algorithm.
Some heuristic work along this line has been done by Lavakusha et
al.[13] and Shanmukh and Pujari [7]. An active volume intersection
algorithm requires: 1) a measure of the current reconstruction accu-
racy for an unknown object; and 2) efficient rules for choosing the
next viewpoint. The theoretical results of this paper suggest to define
some kind of surface reconstruction accuracy, based on the hard
points and lines of the current reconstructed object. It also seems
possible to construct practical efficient rules for improving this accu-
racy, starting from the geometry of the current reconstructed object
and its hard points and lines.

APPENDIX

In this Appendix we describe an algorithm for computing the hard
convex edges (or parts of edges) of a polyhedral visual hull with n
edges. Let us consider a point P of a convex edge E; of a polyhedral
visual hull VH. If we assume that P is hard, according to Proposition
4 there are lines passing through P and sharing with VH no other
points. These lines fill a solid cone C, whose boundary consists of a
number of planar surfaces, each formed by lines which pass through
P and an edge E; of VH and which do not share with VH any other
point. Let us refer to these planar surfaces as PE surfaces. If we as-
sume on the contrary that the point P is soft, the cone C is flat, i.e., it
has no interior points, only boundary surfaces. The boundary of the
cone C cannot completely disappear, since passing through any point
P of the boundary of any visual hull VH (even though not polyhe-
dral) there must be at least a line sharing with VH only points of its
boundary. Otherwise, the point P would be a concave point of the
boundary of VH, which, of course, is not possible.

4

e

Fig. 19. A PE surface containing isolated edges.

It follows that, to verify whether a point P of a convex edge is
hard, we can perform the following steps:

1) Find all the PE; surfaces relative to P and to any edge E;
#])

2) For each surface, compute the polygonal intersection SP;
of the surface and VH. SP; could consist also of isolated
edges. This happens, for instance, if we consider a point
lying on the edge E, of the object in Fig. 5(b), and the sur
face PE, (see Fig. 19).

3) For each surface, verify whether there are lines passing
through P which do not intersect SP; at any other point. It is
easy to see that this can be done in O(rn?) time. If such lines

exist, P is hard, since we can rotate L, one of these lines,
about P at an infinitesimal angle in a plane normal to PE;
(see Fig. 20) so that it becomes a line L’ which satisfies the
condition of Proposition 4.

Fig. 20. A hard point P, through which a line L” passes satisfying the condi-
tion of Proposition 4.

Adding up, we can verify whether P is hard in O(n’) time. To ap-
ply the above algorithm to a random point of an edge is not sufficient
if exceptional alignment conditions are allowed, since in this case an
edge can be partially hard. For dealing with these cases, we observe
that, if we imagine displacing P along E; the PE surfaces of the
boundary of C can appear or disappear only when P crosses VE or
EEE surfaces (see also [15]). The VE surfaces are those produced by
the lines passing through a vertex V and an edge E of VH; the EEE
surfaces are those produced by the lines passing through three edges
of VH. These surfaces are O(ns), and divide each edge into O(ns)
parts which must be checked separately. In conclusion, the algorithm
in the general case takes O(ng) time. We shall not mention here some
trivial pruning actions which do not affect the time bound of the al-
gorithm.

REFERENCES

[1] Y.C. Kim and J.K. Aggarwal, “Rectangular parallelepiped coding for
solid modeling,” Int’l J. Robotics Automation, vol. 1, pp. 77-85, 1986.
C. Chien and J.K. Aggarwal, “Model reconstruction and shape recogni-
tion from occluding contours,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 11, pp. 372-389, 1989.

Lavakusa, A K. Pujazi, and P.G. Reddy, “Linear octrees by volume in-

tersection,” Computer Vision Graphics Image Process, vol. 45, pp. 371-

379, 1989.

[4] S. Srivastava and N. Ahuia, “An algorithm for generatng octrees from
object silhouettes in perspective views,” Proc. IEEE Workshop Com-
puter Vision, Miami Beach, Fla., pp. 363-365, Nov. 1987.

[S] N. Ahuja and J. Veenstra, “Generating octrees from object silhouettes in
orthographic views,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 11, pp. 137-149, 1989.

[6] T.H. Hong and M. Schneier, “Describing a robot’s workspace using a
sequence of views from a moving camera,” [EEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 7, pp. 721-726, 1985.

[7] K. Shanmukh and A K. Pujari, “Volume intersection with optimal set of
directions,” Pattern Recognition Letters, vol. 12, pp. 165-170, 1991.

[8] W.N. Martin and J.K. Aggarwal, “Volumetric description of objects
from multiple views,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 5, pp. 150-158, 1983.

[9] P. Srinivasan, S. Fukusa, and S. Azimoto., “Computational geometric
methods in volumetric intersection for 3D reconstruction,” Pattern Rec-
ognition, vol. 23, pp. 843-857, 1990.

[10] M. Potemesil, “Generating octree models of 3D objects from their sil-
houettes in a sequence of images,” Computer Vision Graphics and Im-
age Process., vol. 40, pp. 1-29, 1987.

{11] H. Noborio, P. Liang, and S. Hackwood, “Construction of the octree ap-
proximating three-dimensional objects by using multiple views,” JEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 10, pp. 769-
782, 1988.

[12] C.H. Chien and JK. Aggarwal, “Volume/surface octrees for the repre-
sentation of three-dimensional objects,” Computer Vision, Graphics and
Image Processing, vol. 36, pp. 100-113, 1986.

2

3

[head



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO. 2, FEBRUARY 1995 195

[13] Lavakusha, A.K. Pujazi, and P.G. Reddy., “Volume intersection algo-
rithms with changing directions of views,” Proc. MIV-89, Tokyo, pp.
309-314, 1989.

[14] A. Laurentini, “The visual hull of solids of revolution,” Proc. !1th IAPR
Int’l Conf. on Pattern Recognition, The Hague, the Netherlands, pp.
720-724, 1992.

[15) A. Laurentini, “The visual hull concept for silhouette-based image un-
derstanding,” IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 16, pp. 150-162, 1994.

{16] E. Preparata and M. Shamos, Computational Geometry, New York:
Springer-Verlag, 1985.

[17] A. Laurentini, “Theoretical capabilities and limits of the volume inter-
section technique,” Int. Rept. .292, 1992,

Pose Estimation by Fusing Noisy Data
of Different Dimensions

Yacov Hel-Or and Michael Werman

Abstract — A method for fusing and integrating different 2D and 3D
measurements for pose estimation is proposed. The 2D measured data is
viewed as 3D data with infinite uncertainty in particular directions. The
method is implemented using Kalman filtering. It is robust and easily
parallelizable.

Index Terms—Sensor fusion, Kalman filter, pose estimation, model
based, object recognition.

I. INTRODUCTION

In model-based pose determination the position of a known ob-
ject is determined from different types of surface measurements
(for reviews see [1], [2], [3]). Usually, feature points such as
maximum curvature, segment endpoints, and corners are measured.
The aim of this correpondence is to determine the correct rigid
transformation (translation and orientation) of the model points to
the measured points where the measured data is not exact. This
problem is known as absolute orientation in photogrametry (for a
review see [4]) and is classified into two major categories accord-
ing to the type of measurements:

1) 3D to 3D correspondence: Both model and measurements supply
information about the 3D location of features (measurements
from range data, stereo, etc.).

2) 2D to 3D correspondence: The model is 3D while the available
measurements supply projected 2D information. The projection
can be perspective or orthographic.

Methods to compute the absolute orientation, most of which ex-
ploit least-square techniques in either closed (e.g. [S], [6], [7], [8],
[9]) or iterative form (e.g. [2], [4], [6], [10], [11]), have been pre-
sented. However, each method can be applied to only one of the
categories described above.

In this correpondence we suggest a uniform framework to com-
pute the absolute orientation, where the measured data can be a
mixture of 2D and 3D information. Unifying the different types of
measurements is done by associating an uncertainty matrix with
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each measured feature. Uncertainty depends both on the measure-
ment noise and the type of measurement. A 2D measurement is a
projection (perspective or orthographic) onto a 2D plane, and we
regard it as a measurement in 3D with infinite uncertainty in the di-
rection of the projection. Therefore, the dimensionality of the
measurements is encoded in the covariance matrix. This represen-
tation unifies the two categories of the absolute orientation prob-
lem into a single problem that varies only in the uncertainty values
associated with the measurements. With this paradigm we obtain a
uniform mathematical formulation of the problem and can fuse
different kinds of measurements to obtain a better solution. The al-
gorithm we describe has additional advantages of supplying a cer-
tainty measure of the estimate, enabling an efficient matching strat-
egy and allowing simple parallelization.

II. GENERAL OVERVIEW OF THE PROBLEM.

A model M of a 3D object is represented by a set of points:
M= {u;},

where u; is a three-dimensional object-centered vector associated
with the ¢ point.

A measurement of a 3D object is represented by M” which, similar
to the model representation, is a cellection:

m={(i,A)} -

is a noise-contaminated measure of the real location-vector u; asso-
ciated with the j* measured point and is represented in a viewer-
centered frame of reference.

A; is the covariance matrix depicting the uncertainty in the sensed
vector

We do not constrain the dimensionality of the measured data but al-
low it to be 3D (stereo, range finder, etc.), or 2D (orthographic or
perspective projection).

A matching between the model M and the measurement M’ is a
collection of pairs of the form

matching = {“k (85 Ay )} ’

which represents the correspondence between the model points to the
measured points. For simplicity we denote a model point and its
matched measurement with the same indices.

A. The Problem.

Given a model M, a measurement M’, and a matching as above,
estimate a transformation 7 which optimally maps the points u; of the
model onto the corresponding measured points

(ﬁl”Al)

The estimated transformation 7 describes the position of the meas-
ured object M” in the 3D scene.

The method described below fuses the information from all the
measured points and estimates the transformation T by incremental
refinement using Kalman-filter tools. At each step a matched pair is
introduced and an updated solution is produced.
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