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A growing number of promising applications requires
recognizing posture and motion of humans. Conventional
techniques require to attach foreign objects to the body, which
in several applications is disturbing or impossible. In this paper
we present a new non intrusive motion capture approach. It is
able to reconstruct unconstrained human motion by means of
silhouettes extracted from multiple-viewpoint images.
Silhouettes are easy to obtain from intensity images, can directly
provide a 3D reconstruction of the body and drive model-based
motion capture. We also present results about the precision of
the overall process, obtained in a virtual environment.

.H\ZRUGV� Silhouettes, Volume intersection, Model based
recognition, Motion Capture

���,1752'8&7,21

Capturing posture and motion of the human body is an
important practical issue. Several applications already exist, and
many others are foreseen. Among them: virtual reality (character
animation, games, interactive virtual worlds), sport performance
analysis and athletics training, clinical study of orthopedic
patients, choreography, smart surveillance systems, gesture
driven user interfaces, video annotation.
Several commercial MC systems exist based on optical or
magnetic tracking of sensors attached to the body of the
performer. However, in many application areas it is disturbing
or impossible to attach foreign objects to the body of the
subject. This calls for a new non intrusive technique.
A number of non intrusive MC techniques have been reported in
the literature, different for the data used and for the approach to
motion recovery. The reader is referred to [1], [6] and [11] for
comprehensive  references. However, as far as we know, these
research did not result yet in practical devices.
The  purpose of the authors is to develop an alternative approach
sufficiently simple and robust to allow the implementation of
practical equipment. The approach presented is based on
multiple 2D silhouettes of the body extracted from 2D images.
The outline of our approach is as follows.
� Different cameras are used to obtain views of a human body.

From each image a 2D silhouette of the performer is
extracted.

� A volumetric description of the object is recovered by
intersecting the solid cones obtained by back projecting
from each viewpoint the corresponding silhouette (9ROXPH

,QWHUVHFWLRQ). The final voxel representation can be obtained
at different resolutions.

� The posture is recovered by fitting a model of the human
body to the reconstructed volume. This is obtained by
minimizing a suitable distance function between the volume
and the model with a search through the space of pose
parameters.

� The above procedure is applied to each frame of the motion
sequence. Exception made for the first time, at each frame
the starting position of the model is that obtained for the
previous frame. This reduces the computation and exploits
continuity to avoid local minima.

� 3D poses are recovered as 3D rotations of the joints of the
model. Once tracking is successfully completed the 3D joint
angles can be used for reproducing motion or for template
matching.
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Reconstructing 3D shapes from 2D silhouettes is a popular
approach in computer vision. A two dimensional silhouette is
the contour of the projection on the view plane of a 3D object.
The VI technique (Fig. 1) recovers a volumetric description 5 of
the object 2 from different silhouettes by intersecting the solid
cones obtained by back projecting from each viewpoint the
corresponding silhouette ([8], [15]). 5 is a  bounding volume
which more or less closely  approximates 2, depending on the
viewpoints and the object itself.

Fig. 1: the VI technique

The rationale of the VI approach is that silhouettes can usually
be obtained with simple and robust algorithms from intensity
images. In addition, VI does not compel us to find
correspondences between multiple images.



However, using VI for reconstructing the human body requires
to face several difficulties. Bad placement and insufficient
number of cameras could produce bulges which affect the
correct placement of the model. In addition, because of the
complex shape of the human body, this technique can produce
"phantom" volumes, that is unconnected volumes or protrusions
not corresponding to real parts of the body.
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First we describe the model of the human body used for pose
recovery. Cameras and Silhouettes section covers the problems
of modeling the cameras and of extracting silhouettes from
image planes. Then the VI algorithm is described in details
together with the posture reconstruction algorithm.

7KH�0RGHO
Many approaches to motion recovery are model-based. The
human body is represented with some kind of model whose 3-D
posture and motion is matched with the physical data. Stick
articulated models, as in [9], idealize the human skeleton.
Ellipsoidal blobs [5], cylinders and generalized cylinders [11],
deformed superquadrics [7], geons [3], parametric solids and
finite elements [10], have been used to build models which
mimic more or less closely the human body.
Our model consists of two components: a representation of the
skeleton and a representation of the flesh surrounding it. The
following paragraphs describe the model in details.

7KH� VNHOHWRQ� The body model has fifteen segments
which are connected by spherical joints. The model is composed
by the following body parts: head, trunk, pelvis, upper arms,
forearms, hands, tights, shanks and feet.

Fig. 2: the human body model

Body segments are organized in a tree whose root is located in
the pelvis (see Fig. 2). Each segment inherits the transformation
of its parent. Some constraints have been introduced to model
the structure of human motion according to the anatomy and the
physic of human body motion. Elbows and knees provide only
one degree of freedom (DOF), ankles cannot roll and,
considering as an approximation that the forearm and the hand
are rigidly connected, wrists have no DOFs. The range of values
spanned by the DOFs is also constrained by reasonable bounds.
The total number of DOFs of the model including the (x,y,z)
position of the radix of the tree, is 32.

7KH� VXUIDFH�� The surface is defined through a
triangular mesh consisting of more than 600 triangles depicted
in Fig. 3. The complete set of shape parameters can be arranged
to match the characteristics of the real performer. This surface
representation has an high level of accuracy.

Fig. 3: model surface
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The system must be accurately calibrated to ensure correct
correspondence between the visual cone of each camera and the
3D common world; this is done using Tsai’s method [12] which
requires an accurate identification of 3D reference points to
obtain all the camera parameters. Reference points are obtained
by means of a particular calibration object (Fig. 4), that is an
indeformable structure containing a grid of squares of known
position and dimension, whose centers are the reference points.
The squares have different colors and are arranged on patterns
that allows the calibration process to clearly identify the face of
the object they belong to, and thus to obtain the complete 3D
coordinates of the reference points.

Fig. 4: image of the calibration object

Our approach to silhouette extraction is mainly based on the
ideas presented in [13], [14]. Since we use stationary cameras,
the silhouette extraction system processes a scene that consists
of a static background and one single moving person. Thus we
define a model of the background scene and compare it with the
current frame. The scene on the background is modeled as a
texture surface, every point of which contains a mean value
color and a distribution around that mean. The rationale of this



approach is to reduce the effect of noise of the images acquired
with a CCD camera. The initial model can be computed with a
short sequence (about 200 frames) of the empty scene.
The color data associated to each pixel of the scene model is
represented in YUV format. The advantage of this
representation is that UV are less sensitive to changes in light
intensity and differences between shadowed and not shadowed
areas appear almost only in Y component.
To extract the silhouette of the performer from the current
frame, each pixel of the frame is thresholded against the
expected value, given by the corresponding pixel of the scene
model. Since noise can be different for each pixel, a fixed
threshold would be an exceedingly rough approximation. Hence,
a different threshold for each pixel is evaluated in the pre-
processing step and two values are associated to each pixel of
the scene model: the mean µ color and the threshold for each
component given by:
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where QF�PD[ and QF�PLQ are the minimal and maximal value of the
component c at the point (x,y) and αWRO is a tolerance factor with
αWRO� � < 1. For each component of pixel S we evaluate the
inequality:
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If the inequality is false for both U and V component or false for
Y and at least one of the UV component, the pixel is assigned to
the silhouette since its color is significantly different from the
background. To compensate for changes in lighting, if the pixel
belongs to the background the pixel statistic is updated using a
simple adaptative filter:

1)1( −⋅−+⋅=
WW

S αα
where W refers to the current frame and W�� to the previous one. In
order to avoid the identification of cast shadows as part of the
silhouette we observe that there is a potential shadow only if the
pixel has a similar color but is darker then the expected value. In
this case, we consider a second threshold for Y, given by:
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where αVKDGRZ > 1, usually set as 1.2; if inequality (1) for Y
component computed using 7V is again false the pixel is assigned
to the silhouette.

Fig. 5 (a-d): the scene model, a frame of the sequence and the
extracted silhouette

After the silhouette identification process we apply a post
processing phase to remove spurious features or to fill undesired
holes in the silhouette.
In Fig. 5a is depicted the scene model built for one of the
cameras used into the test sequence, while Fig. 5b is shown one
of the frames of the sequence, in which a person moves into the
active area. Fig. 5c-d show the result of the silhouette extraction
process.
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The VI algorithm works at various resolutions and outputs  the
boundary voxels of the reconstructed volume 5. The running
time of the algorithm depends on the number of boundary
voxels, and thus approximately on the square of the linear
resolution.
The outline of the algorithm is as follows:
� a 3D point 3 is an LQWHUQDO� SRLQW, belonging to 5, if each

projection of 3 in an image plane (according to the camera
model) belongs to the corresponding silhouette

� a voxel is a ERXQGDU\� YR[HO if some, but not all, of its
vertices belong  to 5

� after finding with a simple heuristic one boundary voxel, the
algorithms checks the six adjacent voxels and selects as
boundary voxel those which share with the first voxel a
ERXQGDU\� IDFH, that is a face whose vertices are not all
interior or all exterior

By recursively applying these rules, all the boundary voxels are
found.
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Pose recovery is based on a search through the 32 dimensional
space of pose parameters, and implies finding the pose of the
model which more closely approximates the actual appearance
of the dummy. The approximation accuracy is given by a
similarity function between the current model pose and the
volume 5 obtained by VI. This function is obtained by summing
the squared distance between each voxel center Ci to the closest
segment of the model.
Let ℘ be a vector with 32 parameters required to specify a
posture and dj(Ci) be the distance between the point Ci and the
surface of the segment j. Let 6M, j = 1,..., 15, be the set of voxel
centers closer to segment j. We define the distance function as:

∑∑ ∈∀=
⋅=℘

M6M MZ5'
iC i

2
j

15

1
)(Cd),(

The contribution to '�℘,5)  of each segment depends on the
number of voxels assigned to the segment and on the dimension
of the correspondent part of the body. The purpose of the
weights ZL is to enhance the contribution of the smallest parts of
the model in order to obtain similar posture errors for trunk and
limbs.
To minimize '�℘,5) we use the gradient method. The process
is stopped when ∆'�℘,5)  is lower than a pre-defined
threshold.
In order to reduce the number of computations required, each
segment is approximated by an oriented bounding ellipsoid
(OBE, see Fig. 6). The posture recovery process is a two stage
process: a coarser first step in which the OBEs are fitted to the
reconstructed volume, and a finer second step in which fitting is
applied to the real model.



Fig. 6: oriented bounding ellipsoid (OBE) of the trunk

To recover the motion of the dummy, the above procedure is
applied to each frame of the motion sequence. Exception made
for the first time, the starting position of the model is that
obtained for the previous frame. Since each time the dummy is
close to its final position, the computation of the new posture
requires relatively few steps. In addition, some sort of implicit
filtering takes place, since possible local minima of the distance
function due to "phantom" volumes are avoided.
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The experimental work has been divided in two phases. First,
the system has been tested in a virtual environment in order to
investigate the precision of both 3D direct reconstruction and
model-based posture and motion identification for several
postures of the body and various resolutions. Obviously,
evaluating the precision of reconstruction is much easier in the
virtual world than in the real world. In fact we know a priori the
exact posture of the body, and the model used for fitting the
reconstructed volume is the same model which produces the
silhouettes.
Second, we applied the proposed approach to real image
sequences.

$FFXUDF\�LQ�D�9LUWXDO�(QYLURQPHQW
In order to cover many significant postures and typical
movements, we evaluated the reconstruction accuracy for
several different image sequences (see Fig. 7), that is:
� a straight walk, in which the dummy perform a full gait

cycle (two steps of 1 meter each) recorded in 42 frames
� a circular walk on a path 2 meters across (80 frames)
� a run (42 frames)
� a gymnastic movement (40 frames)
To evaluate how resolution affects posture precision we have
reconstructed the volume using three different voxel sizes  (45,
35, and 25 mm). Five cameras have been used for all the tests
(four camera located in an horizontal plane, one meter and a half
above the floor and the fifth shooting the dummy from above).
The active area is 4x4 meters wide.

The model used to create the motion sequences is 1.80 m high.
The results obtained are summarized from Table 1 to Table 3,
where we report the posture errors averaged over all the frames
of the sequences. Diagram 1 to Diagram 4 report the average
posture errors for each frame of the sequences, expressed in mm,
for decreasing voxel size. The best average error obtained for
the different sequences is between 16 and 21 mm, that is almost
1% of the body size. The best reconstruction has been achieved
for all the sequences using voxels of 35 mm.  The diagrams also
show that the accuracy of the reconstruction is relatively
unaffected by the voxel size.
These results are similar to those obtained with a simpler model,
consisting of cylinders of various width [4].
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The video sequences we have used in our tests are courtesy of
MOTEK Motion Technology of Amsterdam (The Netherlands).
We have used five video cameras to record five different views
of the performer. The sequences have been synchronized by
flashing a light at the outset and detecting the starting video
frames containing the flash.
The actor performed freely in the work area since we wanted to
test our approach for real unconstrained motion. Even if it was
not possible to put a camera over the head of the performer, the
reconstructed sequence looks satisfactory when seen at real
frame rate (25 frame/s). Fig. 9 shows the composition of real
and virtual model (Fig. 8 contains the same frames with only the
real performer).
To evaluate how different resolutions affect pose reconstruction,
we present the difference between the postures obtained using
voxels of 30 and 50 mm. As can be seen in Diagram 5, the mean
difference is relatively low and its mean value for the first 55
frames is 8.9 mm.
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We have demonstrated an approach that is able to reconstruct
unconstrained human motion in realistic situations without
requiring markers or external devices attached to the body of the
subject. The approach presented is based on multiple 2D
silhouettes of the body extracted from 2D images. From each set
of silhouette the performer can be reconstructed with a
technique known as 9ROXPH�,QWHUVHFWLRQ. The posture recovery
is then obtained by fitting a model of the human body to the
reconstructed volume.
A quantitative comparison between estimated and true pose is
important to evaluate the proposed system. Experiments in a
virtual environment proved that the reconstruction accuracy for
different motion sequences is between 1.6 and 2.1 centimeters
(about 1% of the reference object). Although no firm statements
about the accuracy of reconstruction can be made for real
sequences, the perceived accuracy looks satisfactory for most of
the target applications of the system. Another interesting result
is that the precision is  relatively unaffected  by reconstructing
the 3D volumes at low resolution also for real images. This
benefits the amount of computation required, and could be
important in cases where a wide area is observed.
It would be interesting to compare the reconstruction precision
of our technique (even if obtained in highly artificial condition)
with that of other motion capture techniques. However, this does



not appear an easy task. A reason is that, as far as we know, no
comparable data are available.  For intrusive MC approaches,
optical markers are  tracked with millimetric precision, and
similar data are claimed for magnetic tracking. However, no
precision data are supplied about the body of the performer.
As far as non-intrusive approaches are concerned, several have
been presented and demonstrated whit real images, but usually
no precision data are available. Clearly, the reason is that this
would require to know the true posture. The only attempt to
perform precise error analysis known to the authors is described
in [2]. However, the measurements reported only refer to the
position of a hand and are not easily comparable with our
results.
In order to improve our technique, we are considering several
issues.
In our approach we only addressed the problem of pose
recovery: as a matter of fact, we assumed that the 3D model was
fully specified a priori. We are currently developing an
automatic measurement process to calibrate the model by means
of an initialization stage which exploits both known poses and
known movements.
Dynamic filtering (such as Kalman filtering) can remove noisy
component of the recovered sequence and could be used to
boost the reconstruction process. Finally, we will attempt to
extend our technique beyond stationary cameras, which could be
of paramount importance for many applications.
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Diagram 1: avg. posture error in mm for linear walk sequence
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Diagram 2: avg. posture error in mm for circular walk sequence

5XQ

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

)UDPHV

0
HD
Q�
HU
UR
U�>
P
P
@

25 mm.

35 mm.

45 mm.

Diagram 3: avg. posture error in mm for run sequence
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Diagram 4: avg. posture error in mm for gymnastic sequence

Voxel Mean Err. Max Err. Min. Err. St. Dev.

25 17.05 21.54 12.61 2.37

35 16.31 23.25 9.91 3.23

45 18.69 23.93 11.60 3.36

Table 1: summary results for linear walk sequence

Voxel Mean Err. Max Err. Min. Err. St. Dev.

25 22.54 34.18 13.51 3.99

35 21.67 29.68 12.07 3.91

45 22.90 33.55 12.64 3.69

Table 2: summary results for circular walk sequence

Voxel Mean Err. Max Err. Min. Err. St. Dev.

25 24.34 37.22 16.37 5.03

35 18.44 25.57 9.20 3.79

45 22.10 31.61 12.32 4.55

Table 3: summary results for run sequence

Voxel Mean Err. Max Err. Min. Err. St. Dev.

25 18.57 29.42 12.22 1.28

35 17.93 32.65 11.65 3.97

45 18.57 30.90 9.52 4.42

Table 4: summary results for gymnastic sequence

5HDO�LPDJHV

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

)UDPHV

0
HD
Q�
HU
UR
U�>
P
P
@

E rr

Diagram 5: avg. posture difference for reconstruction of real
image sequences using 30 and 50 mm voxels



Fig. 7 (a-d): linear walk, circular walk, run and gymnastic
sequence

Fig. 8: outtakes from camera 2

Fig. 9: reconstructed postures
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