
1 Introduction

Experimenting with
nonintrusive motion
capture in a virtual
environment

Andrea Bottino,
Aldo Laurentini

Dipartimento di Automatica ed Informatica,
Politecnico di Torino, Corso Duca degli Abruzzi, 24,
10129 Torino, Italy
e-mail: bottino@polito.it

A growing number of promising applications
requires recognizing human posture and mo-
tion. Conventional techniques require us to
attach foreign objects to the body, which
in some applications is disturbing or even
impossible. New, nonintrusive motion cap-
ture approaches are called for. The well-
known shape-from-silhouette technique for
understanding 3D shapes could also be ef-
fective for human bodies. We present a novel
technique for model-based motion capture
that uses silhouettes extracted from multi-
ple views. A 3D reconstruction of the per-
former can be computed from a silhouette
with a technique known as volume intersec-
tion. We can recover the posture by fitting
a model of the human body to the recon-
structed volume. The purpose of this work
is to test the effectiveness of this approach
in a virtual environment by investigating the
precision of the posture and motion obtained
with various numbers and arrangements of
stationary cameras. An average 1% position
error has been obtained with five cameras.
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Capturing human motion is an important practical
issue. Several applications already exist, and many
others are foreseen. Among them are virtual real-
ity (character animation, games, interactive virtual
worlds), motion analysis (sport performance anal-
ysis, athletes training, clinical study of orthopedic
patients, choreography of dance and ballet), smart
surveillance systems, gesture-driven user interfaces,
and telerobotics (Gavrila 1999).
Understanding human posture and motion is a chal-
lenging task since the human body is a complex, ar-
ticulated and flexible object, and many postures pro-
duce self-occlusion.
Several kinds of commercial motion capture equip-
ment exist at present. They are based on the idea
of tracking key points of the subject (usually joints)
(Lee and Chen 1985; Rashid 1980; Webb and Ag-
garwal 1982). This can be done with one of two
technologies: magnetic and optical tracking. Both re-
quire more or less bulky objects to be attached to
the body, which might disturb the subject and affect
his gestures. In many of the present and future ap-
plications of motion analysis, nonintrusive sensory
methods are preferable, and in some cases, they are
necessary.
Several authors have dealt with motion capture or
systems that analyze human movement. These are
based on vision, but many approaches are model
based. The human body is usually represented by
some kind of model whose 3D posture and motion
are matched with physical data. Stick-articulated
models, as those of Leung and Yang (1995), ideal-
ize the human skeleton. Ellipsoidal blobs (Bregler
and Malik 1998), cylinders and generalized cylin-
ders (Marr and Nashihara 1985; Mohan and Nevatia
1989; Rohr 1994), deformed superquadrics (Solina
and Bajcsy 1990; Gavrila and Davis 1996), geons
(Biederman 1987), parametric solids and finite ele-
ments (Pentland and Horowitz 1991; Pentland and
Scarloff 1991), have been used to build models that
mimic the human body more or less closely. Mo-
tion estimation has been improved by predictive
Kalman filtering (Pentland and Horowitz 1991; Pent-
land and Scarloff 1991; Rohr 1994; Wachter and
Nagel 1999). The proposed approaches also dif-
fer for the dimensionality of the analyzed space
(2D or 3D), for the sources of information, and for
the approach to motion recovery. Leung and Yang
(1995) present a system that can recover the pos-
ture of a human gymnast from a monocular view.
Rohr (1994) restricts the type of motion analyzed
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to the walking cycle. He detects moving parts with
a change-detection algorithm followed by binary
image operations. Wachter and Nagel (1999) use
a similar approach that exploits both edge and re-
gion information to determine the posture of the
model and camera orientation by means of an it-
erated Kalman filter. The Pfinder system (Wren et
al. 1997) tracks features such as those of the head,
hands, and body. Various body parts and the back-
ground scene are described in statistical terms by
spatial and color distributions. Azarbayejani and
Pentland (1996) report a similar approach, which
exploits 2D projection of blobs to track the arms
and head from two views with nonlinear estimation
techniques. Gavrila and Davis (1996) use four or-
thogonal views to recover the posture. The pose is
recovered and tracked by a prediction, synthesis, im-
age analysis, and state estimation chain. Bregler and
Malik (1998) track the performer in a region-based,
motion-estimation framework, and fit the model
to the images by means of a Newton-Raphson-
style minimization. Kakadiaris and Metaxas (1998)
present another approach. They do not use a model
defined a priori, but recover the body parts from the
image sequence.
Comprehensive references to many techniques in
this area can be found in the recent surveys of Aggar-
wal and Cai (1999) and Gavrila (1999).
In this paper, we present and discuss a new, nonin-
trusive motion-capture technique based on multiple
video images. The approach is based on 2D silhou-
ettes of the body extracted from 2D images, and
could be sufficiently simple and robust for practical
implementations. The main features of our approach
are:
1. Silhouettes can usually be obtained with a simple

and robust algorithm from intensity images.
2. A direct reconstruction of the 3D shape of the

body can be computed from the silhouettes with
a technique known as volume intersection (Lau-
rentini 1994; Zheng 1994), and the 3D posture
and motion of models of the human body can be
obtained by fitting a model to the reconstructed
volume

However, the number and position of the cameras,
subject to practical constraints, strongly affect the
accuracy of the 3D reconstruction, and, thus, also
the estimation of the posture and motion of a model.
Studying this problem is a necessary step towards
effective motion capture from multiple silhouettes.
The purpose of this paper is twofold:

1. To demonstrate a model-based motion capture
based on this approach in a virtual environment.

2. To investigate the precision of our approach for
both direct 3D reconstruction and model-based
motion identification with various arrangements
of cameras and various resolutions, models, and
motions.

Obviously, the second task is much easier in the vir-
tual world than in the real world since we know the
exact posture of the body a priori, and the model used
for fitting the reconstructed volume is the same as the
model that produces the silhouettes.
The content of this paper is as follows. In Sect. 2, we
discuss the problems connected to the reconstruction
of 3D shapes from silhouettes. In Sect. 3, we describe
the virtual environment and the algorithms for deter-
mining posture and motion. In Sect. 4 we present and
discuss the experimental results obtained.

2 The multiple silhouette approach to
motion capture

Reconstructing 3D shapes from 2D silhouettes is
a popular approach in computer vision. A 2D sil-
houette of a 3D object is the region occupied by
the projection of the object on the view plane. The
volume intersection (VI) technique (Fig. 1) recov-
ers a volumetric description R of the object O from
different silhouettes by intersecting the solid cones
obtained by back-projecting from each viewpoint
the corresponding silhouette (Martin and Aggarwal
1983; Potemesil 1987; Noborio et al. 1988; Ahuja
and Veenstra 1989; Chian and Aggarwal 1989; Srini-
vasan et al. 1990; Zheng 1994). R is a volume that
approximates O; how closely depends on the view-
points and the object itself. The rationale of the VI
approach is that silhouettes can usually be obtained
with simple and robust algorithms from intensity im-
ages. In addition, VI does not compel us to find cor-
respondence between multiple images.
Despite the simplicity of the basic idea, the VI ap-
proach raises a number of questions, such as: which
objects are exactly reconstructable; which is the clos-
est approximation that can be obtained for nonre-
constructable objects; what can be inferred about
the unknown object from the reconstructed object?
The geometric concept of the visual hull (Laurentini
1994, 1995, 1997) provides answers to these ques-
tions, which are relevant for all VI applications. For
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Fig. 1. The volume intersection (VI) technique
Fig. 2a–c. Phantom volumes

instance, when the arms are close to the trunk or the
legs are close to each other, the visual hull of the
body is larger than the body itself, which, therefore,
cannot be exactly reconstructed from the silhouettes
alone.
Using VI for reconstructing the human body leads
to certain difficulties. Poor placement and an insuf-
ficient number of cameras could produce bulges that
affect the correct placement of the model. In addi-
tion, because of the complex shape of the human
body, this technique can produce “phantom” vol-
umes; that is, unconnected volumes or protrusions
that do not correspond to real parts of the body.
Let us consider the 2D example of Fig. 2a. For each
view, the two objects generate two silhouettes and,

without further information, we cannot distinguish
the phantom objects from the real ones. In this case,
a third viewpoint can easily overcome the problem
(Fig. 2b). However, three viewpoints would not be
sufficient to avoid phantoms. For instance, in Fig. 2c,
three evenly spaced viewing directions still produce
two phantom objects.
It is not difficult to understand that phantom vol-
umes are likely to be produced when a human body
is reconstructed with few silhouettes. Situations as
those shown before in 2D can occur in many planes
sectioning a human body. Thus, investigating the
numbers and positions of cameras suitable for re-
constructing 3D bodies with sufficient precision is
among the goals of this paper.
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Fig. 3. The skeleton (a); the dummy (b)
Fig. 4. The walking dummy

Model-based posture understanding based on VI
consists in fitting a model of the human body to the
volume reconstructed by VI. In principle, this is ex-
actly the same as fitting the projections of the model
to the various silhouettes in two dimensions (at least
for objects of unknown shape), since the information
provided by the set of silhouettes or by the recon-
structed volume is the same. However, fitting in three
dimensions makes it easy to visualize the bulges that
affect the recovered posture.
In model-based motion capture, the phantom prob-
lem is much less severe, since exploiting continuity
is a powerful tool for fitting the “true” volumes in
ambiguous cases.

3 The virtual environment and motion
capture system

In this section, we describe the various software
components developed for reconstructing a 3D body
from its silhouettes and for capturing its motion in
a virtual environment. The VI, posture determina-
tion, and motion capture software can also deal with
silhouettes extracted from real-world images, and
will be used in our future work. Two models of the
human body have been used in our experiments. In
this section, we present the simpler model. The sec-
ond is described in Sect. 4.

3.1 The simpler model

The skeleton of the human body has been modeled
as a tree of 14 rigid segments connected by ball
joints (Fig. 3a). The lengths and the widths of the
segments agree with the average measurements of
the male population (Fantin and Dias 1994) and the
body, without the head, is about 1.50 m high. The
body is modeled by cylinders of various widths cen-
tered about the segments (Fig. 3b), except for the
trunk, whose section is a rectangle with smoothed
angles. To specify a posture, one must specify a vec-
tor ℘ with 32 parameters: the (x, y, z) position of the
radix of the tree and two angles for each segment, ex-
cept for the trunk. An extra parameter is required to
specify its rotation, since it is not symmetrical with
respect to its axis. The model is constrained to avoid
physically impossible positions, and simple motion
algorithms can be used to drive it in various motion
sequences (Fig. 4), which are sufficiently realistic for
our purposes. For details, see Blunno and Falcione
(1996).

3.2 Cameras and silhouettes

Any number of stationary cameras can be located
anywhere in the virtual 3D environment (Fig. 5). The
position and orientation of each camera are specified
with a view center, an optical axis, and an up vector.
Each virtual camera provides a frame of 512 × 512
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Fig. 5. The virtual environment

two-level pixels in the virtual image plane. OpenGl
has been used to model the virtual environment and
to obtain the silhouettes.

3.3 The volume intersection algorithm

Provision has also been made for images produced
by a real camera, and the silhouettes can be back-
projected with Tsai’s camera model and calibration
data, consisting of a set of 3D world coordinates of
feature points and the corresponding 2D coordinates
of the feature points in the image. The reader is re-
ferred to the original paper for further details (Tsai
1987).
The VI algorithm works at various resolutions and
outputs the boundary voxels of the reconstructed vol-
ume R. Its running time mainly depends on the num-
ber of boundary voxels, and thus approximately on
the square of the linear resolution.
Let a 3D point P be an internal point if it belongs
to R; otherwise, an external point. Clearly, each pro-
jection of an internal point in an image plane be-
longs to the corresponding silhouette. The vertices
of a boundary voxel of R cannot be all internal or
all external points. The VI algorithm is as follows.
After finding an initial boundary voxel, the algo-
rithms checks the six adjacent voxels and selects
those that share a boundary face with the first voxel
as the boundary voxels. The vertices of such a bound-
ary face cannot be all internal points or all external
points.
All the boundary voxels are found by applying these
rules recursively. The initial boundary voxel can be
found as follows:

• For the first frame, a random internal point is cho-
sen as the center of the initial voxel; if the selected
voxel is not a boundary voxel, then a boundary
voxel can be found by exploring the voxel space
along the coordinate axis.

• For the following frames, we look for boundary
voxels of the previous frame that are also on the
boundary at the current frame.

In Fig. 6, we show a 2D example of the VI algorithm.
In Fig. 6c and d we see how boundary voxels are
recursively found: the white dotted voxels are dis-
carded since they do not share a boundary face with
the boundary voxel previously found, while the rule
is applied recursively to the black dotted ones. In
Fig. 7 we show some outputs of the VI algorithm at
various resolutions.

3.4 Determining the posture of the model

Fitting the model to volume R obtained by VI re-
quires minimization of some measure of distance
between the dummy and the reconstructed volume.
A rather straightforward choice is to minimize the
distance between the boundary voxels of R and the
surface of the dummy. In more detail, let Ci be
a voxel center. Its distance from the surface of the
dummy is assumed to be the distance between Ci and
the closest surface of a segment of the dummy. Let
this be segment j, and let the distance be d j(Ci). Let
Sj , j = 1, . . . , 14 be the set of centers closest to each
segment. We define the distance function as:

D(℘, R) =
14∑
j=1

w j ·
∑

∀Ci∈Sj

d2
j (Ci).

The contribution of each segment to D(℘, R) de-
pends on the number of voxels assigned to the seg-
ment, which can change at each iteration, and it also
depends on the dimension of the corresponding part
of the body. The purpose of the weights wi is to en-
hance the contribution of the smallest parts of the
model in order to obtain similar posture errors for
trunk and limbs. Convenient values of the weights
have been found experimentally.
For minimizing D(℘, R), we use the gradient method
in the 32D space of the position parameters. The pro-
cess is stopped when ∆D(℘, R) becomes less than
a predefined threshold.
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Fig. 6a–d. Example of the VI algorithm running in two dimen-
sions
Fig. 7. The original posture and the volumes reconstructed at in-
creasing resolutions (voxel sizes of 50 mm, 35 mm, and 20 mm)

As for the VI algorithm, the reconstruction time de-
pends mainly on the number of voxels, and thus ap-
proximately on the square of the linear resolution.
It is worth noting that the distance measure cho-
sen is computationally expensive, even though some
simplification is possible for a sequence of contigu-

ous postures. We also experimented with a simpler
distance function, in which the distances were com-
puted between the centers of the boundary voxels
and the skeleton segments. However, this choice re-
sulted in a less accurate posture determination, par-
ticularly for the cases in which the bulges produced
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Fig. 8. Horizontal section of the dummy

by the VI algorithm were more conspicuous. The
reason for this can be understood from the exam-
ple in Fig. 8, which shows a horizontal section of
the dummy. In this case, the correct assignment of
the voxel marked with a small cross is to segment 1,
since the distance DSu,1 of its center from the surface
of segment 1 is less than DSu,2, the distance from the
surface of segment 2. However, if we consider the
distances from the center of the segments, then it is
DCe,2 < DCe,1, and the point would be assigned to
segment 2.

3.5 Recovering the motion of the model

In order to recover the motion of the dummy, the pro-
cedure just described is applied to each frame of the
motion sequence. Except for the first frame, the start-
ing position of the model is the one obtained from the
previous set of silhouettes. Since the dummy is close
to its final position at each iteration, the computation
of the new posture requires relatively few steps. In
addition, some sort of implicit filtering takes place,
since possible local minima of the distance function
due to phantom volumes are avoided.
The dummy easily fits the first volume obtained, pro-
vided that the start-up position has almost the same
global orientation as the moving dummy.

4 Experimental results

In this section, we present and discuss the precision
performances of our algorithm.
In the first test, we consider a full gait cycle (two
steps of about 1 m each), recorded in 42 frames, with

which we can consider several postures. The initial
frames of the sequence are depicted in Fig. 9.
To evaluate how resolution affects posture preci-
sion, we use three voxel sizes for the VI algorithm
(50 mm, 35 mm, and 20 mm).
The number and position of the cameras strongly
affects the VI reconstruction, and then the posture
precision. To reduce the degrees of freedom (DOFs)
of our search, we explored mainly arrangements of
three, four, and five cameras. It is worth noting that
optical motion capture systems typically use six to
eight cameras for capturing the motion of the full
body (Webb and Aggarwall 1982; Sabel 1996; Wells
and Tutt 1998). As another practical constraint, we
locate most cameras in a horizontal plane, 1 m above
the floor.
First, we experimented with various arrangements of
three cameras in this plane, and we found no satisfac-
tory positioning. In all the cases tested, the position
of the arms of the dummy was completely wrong for
many frames in the gate cycle, with errors of more
than 10 cm.
The accuracy was markedly improved by a fourth
camera in the same plane, and by a fifth camera, lo-
cated at 4 m from the ground level, with a vertical
optical axis (that is, above the head of the dummy).
However, adding more cameras on the plane seemed
to improve the accuracy only marginally.
We experimented with several arrangements of the
four cameras in the horizontal plane. Four of them
are shown in Fig. 10, where the dotted lines of the
grid are 1 m apart. The corresponding positioning er-
rors are reported in Fig. 11 for all the frames of the
gait cycle. They are obtained by plotting the values of
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10c 10d

Fig. 9. The walking sequence
Fig. 10a–d. Four camera arrangements in the
horizontal plane
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Fig. 11. D(℘, R) versus the frame number for different arrangements
Fig. 12. Volume intersection precision for four cameras

the distance function D(℘, R) of the walking model
obtained for each frame. The units of the scale are
not given since the value of D(℘, R) cannot immedi-
ately be related to the error functions defined in the
following paragraphs.
Several arrangements resulted in similar accuracy,
provided that no two optical axes were too close,
as in case P3. We also found better accuracy when
the optical axes converged at the gait-cycle center.
Thus, we also considered the arrangement named
ORT (Fig. 10d), which is equivalent to moving the
cameras, the center of the model being always in the
same position.
In conclusion, for the tests described in detail in the
following subsections, we selected the arrangement
labeled P1 in Fig. 10a for the four cameras in the hor-
izontal plane.

4.1 Volume intersection precision

A common parameter used to define the precision
of the reconstruction obtained by VI algorithms is
the ratio between the reconstructed volume and the
volume of the original object (Ahuja and Veenstra
1989; Noborio et al. 1988; Potemesil 1987). In or-
der to minimize the consequences of the quantiza-
tion, the reconstructed volume is computed with the
formula:

reconstructed volume =
∑

inner voxels

s3

+
∑

boundary voxels

(
no. of voxel vertices ∈ R

8

)
· s3,

s = voxel size
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Fig. 13. Volume intersection precision for five cameras
Fig. 14. Axes of the real and reconstructed segments

where the second term approximates the portion of
volume of the boundary voxels belonging to R.
The reconstruction precision obtained with four and
five cameras is plotted for all the frames of the gait
cycle and for three resolutions in Figs. 12 and 13.
Even with five cameras, these data show a rather
coarse reconstruction for many postures. Since de-
creasing the voxel size provides perceptible, but not
substantial, improvements, little precision is essen-
tially due to the few cameras in relation with the
complex shape of the body. However, as we show in
the next subsection, the posture of the dummy can
be determined from these rather rough volumes with
centimetric precision.

4.2 Posture determination in the gait cycle

In this subsection, we present the experimental re-
sults concerning the precision of the postures of the
model determined in the gait cycle.
For each segment i, i = 1 . . . 14, we define a recon-
struction error di as the average distance between
a point Pi1(t) of the axis of the real segment and the
corresponding point Pi2(t) of the axis of the recon-
structed segment (Fig. 14):

di = 1

T

T∫
0

Di(t)dt =
1∫

0

‖Pi1(t), Pi2(t)‖dt

=
1∫

0

‖Si1 + (Ei1 − Si1)t, Si2 + (Ei2 − Si2)t‖dt.

To summarize the overall difference between the true
posture and the posture determined with our algo-
rithm for the entire dummy, we compute an average
distance weighted with the length of the segments for
each frame as follows:

Posture error =
14∑

i=1

Li ·di

/
14∑

i=1

Li ,

where Li is the length of each segment. The average
posture errors for each frame of the gait cycle, are re-
ported in Figs. 15–17 for decreasing voxel size. In
each diagram we plot the errors for both the four- and
five-camera arrangements.
A substantial error reduction is provided by the fifth
camera, with a vertical axis, which strongly reduces
phantoms and bulges. It can also be observed that the
larger posture errors are in the frames where the arms
are close to the trunk and the legs are close to each
other. Images of the reconstructed sequence can be
seen in Fig. 18 in which the reconstructed posture
(depicted in red) and the corresponding posture of
the walking dummy (depicted in blue) are overlaid.
The results obtained are summarized in Table 1,
where we report the posture errors averaged over all
the frames of the gait cycle. We stress the results ob-
tained with 5 cameras and 50-mm voxels: an average
error of 10 mm and a maximum error of less than
16 mm. In Table 2, we briefly report the average re-
construction error per body part when five cameras
and voxels of 50 mm were used. A unoptimized ver-
sion of the system runs on a Pentium 500 between
7 s/frame with 50-mm voxels and 55 s/frame with
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Fig. 15. The average posture error for four and five cameras. The voxel size is 20 mm
Fig. 16. The average posture error for four and five cameras. The voxel size is 35 mm
Fig. 17. The average posture error for four and five cameras. The voxel size is 50 mm
Fig. 18. The reconstructed posture (red) and the original posture (blue)
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Table 1. Posture errors averaged over all frames

Five cameras Five cameras Five cameras Four cameras Four cameras Four cameras
50-mm Voxels 35-mm Voxels 20-mm Voxels 50-mm Voxels 35-mm Voxels 20-mm Voxels

Mean 10.259 11.910 11.900 14.492 15.944 15.717
Standard deviation 1.721 2.673 1.715 2.747 3.498 3.447
Variance 2.965 7.147 2.942 7.550 12.236 11.883
Minimum 7.160 7.896 9.070 9.921 9.982 10.184
Maximum 15.300 20.761 16.812 21.023 25.567 23.637

Table 2. The average reconstruction error per body part with
five cameras and voxels of 50 mm

Body part Mean Body part Mean

Neck 11.27 Breast 7.86
Right shoulder 8.09 Right pelvis 8.70
Left shoulder 8.62 Left pelvis 8.44
Right upper arm 9.16 Right thigh 8.12
Left upper arm 9.43 Left thigh 8.61
Right forearm 12.91 Right shank 10.22
Left forearm 13.70 Left shank 10.42

20 mm voxels. In fact, the computational speed was
not the primary concern of this work.
Finally, it must be underlined that the posture preci-
sion is practically unaffected by the voxel size.

4.3 Experimenting with other kinds of
motion

In this section, we briefly report the results of the
tests on two other kinds of motion: a run through the
working space and a sort of gymnastic exercise in
which the dummy move its limbs and bends down.
The run is 32 frames long, while the exercise se-
quence is 40 frames long. Some images extracted
from the two sequences are shown in Figs. 19 and 20.
The two sequences have been reconstructed with
the same camera arrangement used for the walk se-
quence and three voxel resolutions (50 mm, 35 mm,
and 20 mm). The average posture errors for each
frame of the sequences, are given in Figs. 21 and 22.
Table 3 summarizes the results obtained.
The increase of the average error is mainly due to the
fact that the arms are very close to the trunk or all the
limbs are close together in many frames (as at the end
of the gymnastic sequence). The results obtained are
still satisfactory (the best average error was 12 mm
for the run sequence, and 11 mm was the best for the
gymnastic sequence).

19

20

Fig. 19. Images of the running dummy
Fig. 20. Images of the gymnastic dummy

4.4 Experimenting with a more complex
dummy

In order to verify the results obtained, we applied
our technique to a more realistic dummy and a dif-
ferent definition of posture error. This model has 15
segments that are connected by spherical joints. The
segments are organized in a tree whose root is lo-
cated in the pelvis (Fig. 23), where the numbers rep-
resent the DOFs of the various segments. The total
number of DOFs of the model, including the (x, y, z)
position of the radix of the tree, is 32 (trunk and
pelvis are both connected to the root and have 3
DOFs each).
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Fig. 22. The average posture error for the run sequence
Fig. 21. The average posture error for the gymnastic sequence

Fig. 23. The human body model
Fig. 24. Model surface

Table 3. Posture errors in millimeters averaged over all frames, standard deviation, variance, maximal and minimal values of the
distributions of Figs. 21 and 22

Run with Run with Run with Gymnastics with Gymnastics with Gymnastics with
50-mm Voxels 35-mm Voxels 20-mm Voxels 50-mm Voxels 35-mm Voxels 20-mm Voxels

Mean 13.578 12.953 12.511 14.310 12.425 11.280
Standard deviation 2.682 2.529 2.270 5.219 5.857 7.433
Variance 7.193 6.400 5.157 27.244 34.308 55.253
Minimum 8.252 8.211 7.870 2.955 4.280 3.401
Maximum 18.613 18.027 16.790 23.774 23.083 23.718

The surface is defined by means of a triangular mesh
consisting of more than 600 triangles depicted in
Fig. 24.
Another error function can be defined with the
polygonal surface. In this case, the posture error is

computed as the average of the distance between cor-
responding vertices of the reference model and the
reconstructed model. We evaluated the posture error
for several image sequences, obtained as before with
simple motion algorithms (Fig. 25):
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a b

c d

Fig. 24a. Linear walk; b circular walk; c run; and d gymnastic sequence

Table 4. Summary of the results for the linear walk sequence

Voxel Mean Maximum Minimum Standard
error error error deviation

25 17.05 21.54 12.61 2.37
35 16.31 23.25 9.91 3.23
45 18.69 23.93 11.60 3.36

Table 5. Summary of the results for the circular walk sequence

Voxel Mean Maximum Minimum Standard
error error error deviation

25 22.54 34.18 13.51 3.99
35 21.67 29.68 12.07 3.91
45 22.90 33.55 12.64 3.69

• A straight walk, in which the dummy performs
a full gait cycle (two steps of 1 m each) recorded
in 42 frames

• A circular walk on a path 2 m across (80 frames)

• A run (42 frames)

• A gymnastic movement (40 frames)

Table 6. Summary of the results for the run sequence

Voxel Mean Maximum Minimum Standard
error error error deviation

25 24.34 37.22 16.37 5.03
35 18.44 25.57 9.20 3.79
45 22.10 31.61 12.32 4.55

Table 7. Summary of the results for the gymnastic sequence

Voxel Mean Maximum Minimum Standard
error error error deviation

25 18.57 29.42 12.22 1.28
35 17.93 32.65 11.65 3.97
45 18.57 30.90 9.52 4.42

The volume has been reconstructed with three voxel
sizes (45 mm, 35 mm, and 25 mm). Five cameras
have been used for all the tests, and their orientation
is the same as the arrangement named P1 in Fig. 10.
The active area is 4 m×4 m. The model used to cre-
ate the motion sequences is 1.80 m high. The results
obtained are summarized in Tables 4 to 7, where we
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report the posture errors averaged over all the frames
of the sequences. The best average error obtained for
the various sequences is between 16 mm and 21 mm;
that is, almost 1% of the body size. The best recon-
struction for all the sequences is the one using voxels
of 35 mm.

5 Concluding remarks and future
work

We have shown and experimented with a technique
for determining posture and motion of the human
body in a virtual environment. This technique, based
on multiple silhouettes obtained with a set of station-
ary cameras, is nonintrusive, which could be impor-
tant or even necessary in many current and future
applications.
The results obtained suggest the practical feasibility
of the proposed approach. The experiments in a vir-
tual world show that, using silhouettes only, model-
based motion can be captured with a reasonable
number of cameras, and this can be done with a pre-
cision that is apparently sufficient for many practical
applications. More precisely, we have found that, al-
though the volumes determined by four or five sil-
houettes are usually rather coarse, a sequence of pos-
tures with an average error of roughly 1% of the
dimension of the model can be determined by fit-
ting a model to a sequence of such volumes. Another
interesting result is that the precision is relatively un-
affected by reconstructing the 3D volumes at low res-
olution. This reduces the amount of computation re-
quired, and could be important in cases where a wide
area is observed.
It could be interesting to compare the precision of
the reconstruction we have found (even though in
highly artificial conditions) with that of other mo-
tion capture techniques. However, this does not ap-
pear to be an easy task. One reason is that no com-
parable data are available as far as we know. Opti-
cal markers are tracked with millimetric precision,
and similar data are claimed for magnetic tracking.
However, this precision only refers to some points
(at most some dozens, but usually many fewer) ly-
ing more or less close to the body, and the actual
posture of the body must be worked out with non-
trivial computations. The only attempt to analyze
errors precisely in computer-vision-based, motion-
capture studies known to the authors is described by
Azarbayejani and Pentland (1996). However, their

measurements only refer to the position of a hand
moving along a straight trajectory of known dimen-
sions, and such measurements cannot easily be com-
pared with our results.
In any case, much more work, both in the virtual
and real worlds, is needed for transforming the idea
into an effective practical technique. Clearly, to ap-
ply our algorithms to real-world images, we must
overcome a number of difficulties. One is the effect
of clothing. Another important point is the size of
the model. Measuring the subject could be disturb-
ing or impossible. A possible solution we are ex-
ploring is a self-adjusting, realistic model exploiting
both known poses and known movements [examples
can be found in works by Kakadiaris and Metaxas
(1998) and Gavrila and Davis (1996)]. Finally, real-
world precision can be improved through dynamic
filtering, and the silhouette data could be integrated
with other image clues like optical flow and texture
information.
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