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In this paper, a model-based head tracking from
monocular and non-calibrated video sequences is
presented. The proposed method relies on the matching of
a 3D generic head model and 2D image features extracted
from the input sequence. Head tracking is based on the
minimization of an error function which describes the
discrepancies between model and image features. Motion
and texture information are considered in order to make
tracking stable. Minimization is obtained applying a
gradient based technique. The sequence of reconstructed
head poses allows simple gesture recognition. After pose
reconstruction, the input image is warped into the texture
map of the model. The stabilized view of the face
obtained, can be used to improve facial expression
analysis and reconstruction. The overall performance of
the non-optimized head tracking algorithm is about 30
frames/sec on a Pentium III 500. Data about the
reconstruction accuracy achievable with our technique are
also presented.

.H\ZRUGV�  head tracking, 3D pose estimation, motion
analysis, face expression reconstruction, monocular video
sequences
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Head tracking is important for several application in
computer vision, like 3D animation systems, virtual
actors, expression analysis, face identification and
surveillance systems. Head motion can be used for
recognition of simple gestures, like head shaking or
nodding, or for capturing a person’s focus of attention,
providing a natural cue for human machine interfaces.
Also for videoconferencing, encoding the head motion of
the speaker according to known standards, like MPEG4
compliant Facial Animation Primitives (FAPs), allows to
produce very low bit rate data streams. Many of these

applications calls for non intrusive and robust
reconstruction techniques from monocular views.

5HODWHG�ZRUN
In the recent years there has been a great interest into head
tracking and face expression recognition, and this research
area has now become a very popular topic. One of the first
effective studies is [3], which presents an estimation
process based on tracking  facial features like eye and
mouth corners. The analysis is limited to the sequences in
which all those feature are visible in every image. Similar
methods have been presented in [7] and [8].
The most successful approaches are model-based
techniques exploiting 2D or 3D models. Examples of 2D
approaches can be found in [4] and [5]. However, 3D
tracking has several advantages, in terms of precision of
the reconstruction and of adaptation of the model to the
rigid motion of the entire head. The techniques presented
differ for the kind of model and for the type of
information used.
In [11], the motion of an ellipsoidal model is used to
interpret the optical flow of the image sequence. The pose
reconstruction is obtained by minimizing the differences
between the model and the image motion using a simplex
gradient-descent technique. This work is also the basis of
[12], where the approach has been modified in order to
cope with partial occlusions of the head.
In [1] the motion of a textured polygonal model is used to
register the rendered image of the model with the video
images. However, the model used is quite complex and
therefore it must be calibrated according to the user. The
computational complexity is strongly reduced exploiting
graphic hardware acceleration for model transformation
and rendering operations.
Also [2] uses a textured head model. Each input image is
projected into the texture map of the model and the
motion is reconstructed by image registration in the
texture space using a set of precomputed illumination
templates.
A different approach is presented in [9], where head pose
determination is achieved by means of a Kalman filter,



which predicts the model pose from the coordinates in the
image plane of facial features like nostrils and eyes. Those
features are extracted with a differential block-matching
algorithm which matches the patterns of the synthetic
model with user’s facial features in the input image.
Again, the drawback is the complexity of the model used
which is obtained with a 3D scan of the user’s head.
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The approach proposed in this paper uses a textured 3D
head model which is fitted to an image sequence acquired
using a single and non-calibrated camera. The model is
defined by a polygonal mesh. Fitting process exploits both
motion and texture information. Motion information is
obtained evaluating the optical flow between two
consecutive frames, while texture information is gathered
warping the image frame in the texture space of the
model. Minimization is achieved applying a steepest
descent based algorithm. Several approaches, as [11] and
[12], uses only motion information. On the contrary, other
works ([1], [2], [9]), exploit merely texture information.
However, combining texture and optical flow is a valuable
method to achieve a more accurate solution of the tracking
problem [14]. Previous works differ also for the approach
to pose reconstruction (gradient-based techniques [1],
downhill simplex techniques [14], [11], Kalman filtering
[9]) and for the characteristics of the models used
(ellipsoids [11], cylinders [2], extended superquadrics
[12], synthesized surfaces [14], scanned head models [9]).
After pose reconstruction, each input image is projected
on the texture map of the model. The dynamic texture map
provides a stabilized view of the face which can be used
for further processing tasks, like facial expression analysis
and recognition.
The outline of the paper is as follows. In paragraph 2 the
proposed technique will be introduced and the details
about system components will be given. In paragraph 3 we
will present some preliminary results concerning the
reconstruction accuracy achievable with our technique.
Finally in paragraph 4 we will report concluding remarks
and will outline the future developments of this work.
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In the following sections we will outline the various
components of the proposed system.

7KH�PRGHO
Choosing the right model is a critical problem for the
tracking process. A too simple model could be not
adequate for tracking the head with precision; on the other
hand, a complex model requires a precise initialization per
user and a good initial fit.

Our system uses an elliptical model defined by a
polygonal mesh (see Fig. 1). This model is not able to
reproduce head features, like nose, mouth or accurate face
profiles, but allows fast computation and can be easily
calibrated according to the user. However, any other
polygonal model can be used, regardless its complexity.
The dimensions of the three major axes of the ellipsoid
are determined during the initialization process. Details of
the startup procedure are given at the end of this
paragraph.

Fig. 1: face model
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The head is a rigid object and has six degrees of freedom
(DOF). The first three DOF define the translation of the
model. The last three DOF describe the rotations around
the [, \ and ] axes. Therefore, each pose is determined by
a vector ℘ containing six values:

℘ = [W[�W\�W]�U[�U\�U]]

The projection of the vertices of the model on the image
plane is defined by a transformation matrix Γ(℘) written
in homogenous coordinates. Let 60 be the set of model
vertices Si in their reference position and 10 the set of
corresponding normal vectors Qi; the projection ([L,\L) of
each point Si on the image plane for pose ℘ is therefore
Γ(℘) ⋅�Si. The matrix Γ is given by:

Γ(℘) = 3(I)⋅7(℘)⋅5(℘)

where 5 is the rotation matrix and 7 the translation
matrix. The values of the projection matrix 3 are functions
of the focal length I which is unknown, since the camera is
non-calibrated.  However, as demonstrated also by [1] and
[2], using a rough estimate of its value does not influence
substantially the final results.
The current normal vectors can be evaluated from 10 as
53x3(℘) ⋅� Qi, where 53x3 is the 3x3 sub-matrix of 5
containing the pure rotational values.



When projecting the model in the image plane we
consider only the points that are currently visible. Given
the viewing direction YG, a point is visible if:

YG ⋅�(53x3(℘) ⋅�Qi) ≤ 0 

For simplicity, we approximate the real viewing directions
all over the face with a constant vector. An example of the
final result of the transformation applied to the model can
be seen in Fig. 2.

Fig. 2: projection of the model on the image plane
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The reconstruction problem involves finding for each
frame Q the vector ℘Q which minimizes the differences
between model and image features. Those discrepancies
are described by an error function ( which comprises
motion and texture errors. Minimization is obtained
applying a steepest-descent based algorithm.
The various components of the error function are detailed
in the following sections.

0RWLRQ�HUURU
Here, the main idea is to match the motion of the model
with the corresponding optical flow evaluated from two
consecutive images.
The optical flow at each point ([�\) of the image is the
vector [u,v] which describes the translation of the pixel
from the previous image. We can also estimate the model
flow as the translation on the image plane of the model
vertices, that is the difference between the positions of the
projected points between pose ℘Q and candidate pose
℘Q��. Since not all the points are visible for both poses,
this evaluation must be computed only for the subset of
common visible points. Let 9n and 9n+1 be the two
subsets, and [uM,i,vM,i] the L-th point estimated
displacement vector.

The motion error function is hence defined as the norm of
the difference between the estimated model flow, 9n+1-9n,
and the optical flow at the N common locations:
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Optical flow is evaluated using the Lucas-Kanade
algorithm (see [13] for further details).
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The idea, again, is to match model and image features,
that is the texture map values associated to the projected
model points and the values of the current frame. These
values are intensity values for achromatic images and
RGB triples for color images.
As in the previous case, we need to find the two subsets of
visible points 9n and 9n+1 that will be used in the
computation. Each point of the textured model has an
associated value 0�SL� in the texture map. Let , be an
image of the sequence; the texture error is then defined as
the norm of the difference between the model texture and
the current frame:
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where /� norm is used for achromatic images and square
distance in RGB space for color images.
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To combine motion and texture information, the target
error function is a weighted sum of the corresponding
error functions. The purpose of the weights is to equalize
the contribution of the different sources of information.
The error function ( can thus be written as:

(� �ZRI�⋅ (RI���ZW[W�⋅ (W[W
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Given the error function (, we have to find the pose which
minimizes the discrepancies between model and image
features.
The minimization of the function is obtained applying a
steepest-descent based method. The method is iterative
and for each iteration the function values corresponding to
translations of ±δt and rotations of ±δr for [, \ and ] are
evaluated. The transformation giving the best
improvement of the error value is selected for the next
iteration. When no improvement can be obtained, the
values of δt and δr are reduced by a factor two and the
process is iterated. The algorithm is stopped when the
deltas are lower than a predefined threshold or a
maximum number of iterations has been performed.



Other optimization algorithms have been tested, like real
gradient techniques or downhill simplex methods (see [10]
for further details); however, the proposed algorithm gives
better results and performs faster.
In order to cope with large head motion we apply an head
motion estimation procedure on each frame of the
sequence before the error function minimization begins.
The motion estimation works as follows. A 2D translation
vector, given by the mean value of the optical flow of the
visible model points, is evaluated in the image plane. This
translation vector is projected on the plane passing
through the center of the object and parallel to the image
plane (see Fig. 3). The 3D vector obtained is used as
initial translation of the model.

Fig. 3: head motion estimation

,PDJH�ZDUSLQJ
When the optimal pose has been found, the content of the
current image is warped into the texture map of the model.
The warping function : is the inverse of the texture
mapping function, and can be written as:

),( ℘= ,:0

where 0 is the model texture. The warped image produces
a stabilized view of the face, which can be used for further
processing, like face expression analysis and
reconstruction.
Some results of the tracking process can be seen in Fig. 4,
where the input image, the reconstructed posture and the
dynamic texture are shown for several frames.

,QL]LDOL]DWLRQ
The reconstruction process needs to know with a good
precision the initial position and orientation of the model.
So far, this step requires user intervention to align the face
model to the head in the video images and to modify the
size of the model.

To avoid interactive procedures, automatic initialization
techniques, as the ones suggested in [11], [16] and [15],
can also be applied.

Fig. 4: results of tracking on several frames of a test
sequence, including original image (first column),

superimposed reconstructed pose (second column) and
dynamic texture map (last column)
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In order to perform a quantitative analysis of the
performances of our system, we have tested the described
approach on several input video sequences. Each
sequence contains 200 frames whose size is 320⋅240
pixels. The data used show different performers and
typical head movements, including large head translation
and rotation. Ground truth for position and orientation of
the head for each sequence have been acquired using a
magnetic sensor. Those sequences were used in evaluating
the system described in [2] and are available by courtesy
of the Image and Video Computing Group of the Boston
University.
Only the rotational values of the ground truth data have
been used for comparison with our results. As a matter of
facts, the translation values refer to the location of the
magnetic marker, which is placed on the back side of the
head. Since in most of the sequences the marker itself is
completely hidden we have no way to guess its position
with a sufficient precision.



The reconstruction looks very stable for [\] translation
and for rotation around ] axis, while the system error
increases when reconstructing large head rotations around
[ and \ axes. This is due to the fact that translation in the
[\ plane and [ or \ rotations produce similar effects in the
image plane. Another drawback is that, for large [ and \
rotations, the discrepancies between head profile and
ellipsoidal model become relevant. Better results might be
obtained using synthesized head-like surfaces, as the one
used in [14]. We are currently investigating this point.
Results are plotted in Table 1 for several input sequences.
The first three columns show the mean reconstruction
error in degrees for rotations around [, \ and ] axes, while
the last three columns show the maximal reconstruction
error for all the sequences. As can be seen the best
average results range between 1.32 and 2.76 degrees. It
should be noted, however, that the mean errors on [ and \
increase drastically when the sequence analyzed contains
large and fast variations of their values (as can be seen for
sequences Jam 5, Jam 6, Jam 7 and Jam 8). On the
contrary, all the sequences where ] rotation is conspicuous
are reconstructed with good precision (such as Jam 1 and
Jam 9). This observation is also underlined by the fact that
the worst average reconstruction error for ] value does not
exceed 4 degrees.

6HT�� ; < = ;�PD[ <�PD[ =�PD[
-DP�� 1.87 ���� 2.85 5.32 9.07 11.17
-DP�� 2.34 7.84 2.26 6.17 26.47 ����
-DP�� 1.81 5.83 ���� 6.71 9.74 5.37
-DP�� 2.79 7.05 ���� 6.73 12.08 9.03
-DP�� 3.12 ����� 2.00 7.39 ����� 7.15
-DP�� ����� 3.06 2.85 ����� ���� 9.59
-DP�� ���� 10.73 2.23 ���� 21.65 6.61
-DP�� 4.22 10.02 3.44 19.64 31.75 �����
-DP�� 3.83 5.30 3.05 11.06 12.65 9.67

Table 1: mean and maximal angular reconstruction errors
in degrees

Concerning reconstruction time, the current
implementation runs at about 15 frame/sec on a Pentium
III 500 Mhz. This value is nearly constant for all the
tested sequences despite the iterative nature of the
reconstruction algorithm. It should be noted, however, that
the code is not optimized and the reconstruction time
includes also the time spent in reading and decoding the
video stream. Discarding acquisition time, the mean
reconstruction rate is about  30 frame/sec. Considerable
improvements can be expected exploiting graphical
hardware, like OpenGl accelerators, to perform model
transformation and image warping, which account for
20% of the execution time.
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In this paper we have presented an approach which is
capable of reconstructing head pose from a monocular
view in real-time. Our approach is model-based. The
model is an ellipsoidal polygonal mesh, but any other 3D
model can be easily used. The system exploits both
motion and texture information, which are combined to
strengthen tracking accuracy. Reconstruction is achieved
finding for each frame the pose which minimizes the
differences between model and image features.
Minimization is obtained applying a steepest-descent
based algorithm.
After the correct pose has been found, the current frame is
warped into the model texture, obtaining a stabilized view
of the face which can be used to enhance further face
analysis processes.
The advantage of this model based reconstruction process
is that motion and texture registration are based only on
the image features being observed, which correspond to
the locations of the projected model points. Hence,
disturbing motion or similar textures in other parts of the
input image are completely ignored by the system.
Moreover, unlike other feature based approaches, the type
of analyzable motion is not constrained by features
vanishing for some views.
The proposed system is currently in its development stage.
Future work will deal with testing the outlined
components with different models and different
minimization algorithms. One of the final goals of this
work is also to achieve higher reconstruction rates in order
to be able to support further processing of the incoming
images in real time. A speed up of the system can be
achieved exploiting dedicated hardware, like graphic
accelerators, to perform part of the operations. Another
important feature that will be added to the system is an
automatic initialization procedure to avoid user interaction
at startup.
The next step of our research project will deal with the
analysis and synthesis of facial expressions and with
coding head motion and face expressions into an MPEG4
FAP stream.
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