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The standard “art gallery” problem con-
sists in stationing a minimum set of guards
in a polygonP so that each point ofP is
seen by at least one guard. We introduce
and explore the edge-covering problem; the
guards are required to observe the edges of
P; metaphorically the paintings on the walls
of the art gallery, and not necessarily every
interior point. We compare minimum edge
and interior covers for a given polygon and
analyze the bounds and complexity for the
edge-covering problem. We also introduce
and analyze a restricted edge covering prob-
lem, where full visibility of each edge from
at least one guard is required. For this prob-
lem we present an algorithm that computes
a set of regions where a minimum set of
guards must be located. The algorithm can
also deal with the external visibility of a set
of polygons.
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Problems of visual sensor placement arise in many
computer vision areas such as object recognition or
reconstruction, robotic tasks, and area surveillance.
Although these are generally 3D problems, in some
cases, such as the surveillance of buildings, we can
restrict our considerations to 2D areas.
The research in this area was triggered by Chvátal’s
“art gallery” Theorem (1975). He proved that at most
g(n)= bn/3c point guards are required for covering
a simple polygonP with n edges. The word polygon
specifies a closed set including interior and boundary
points. Two points of a polygonP arevisible from
each other if the line segment connecting the points
lies entirely inP. A polygonP is coveredby a set of
viewpoints, orguards, lying in P, if each point inP
is visible from at least one guard. Guards can lie in
restricted positions (the vertices for instance); if not,
they arepointguards.
The upper tight boundg(n,h) = b(n+h)/3c for
covering polygons withh polygonal holes andn
edges, a conjecture for about 10 years, has been in-
dependently proven by Bjorling-Sachs and Suvaine
(1995), and Hoffman et al. (1991).
Many variations or restricted versions of the prob-
lem have been considered. The reader is referred
to O’Rourke (1987), Shermer (1992) and Urrutia
(1996) for comprehensive surveys. Most of the prob-
lems in this area can also be interpreted as illumina-
tion problems, where point lights replace the guards.
In spite of the success in finding the worst-case num-
bers of guards, theminimum cover problem, that is,
the practical problem of stationing a minimum set of
G(P) guards in a given polygonP, is still open. We
use the terms ICH and IC to refer to the minimum
cover problems for the interior of polygons with and
without holes.
O’Rourke and Supowit (1983) have shown that the
decisionproblem corresponding to ICH (givenP, is
there a cover ofP with k or fewer guards?) is NP-
hard. The same result for the IC has been obtained by
Lee and Lin (1986).
Algorithms have been constructed for many non-
polynomial problems. They work sufficiently well
with the usual inputs, even though some unlikely
worst case might occur. This is not the case for IC
and ICH: at present, no exact algorithm for finding
and locating a minimum set of guards in a given
polygon has been found. Another possible approach
is to construct approximate algorithms that can sup-
ply solutions close to the optimal. Also this approach
seems unable to cope with the elusive nature of
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IC and ICH, since the current approximate guard-
placing algorithms have no guaranteed performances
int the worst case (Laurentini 1996).
The problem addressed in this paper is differ-
ent from the classic IC and ICH. We call it the
edge-covering problem, since our minimum set of
GE(P) guards must only cover theedgesof the
polygon P, neglecting possible uncovered inter-
nal regions. This problem is in keeping with the
name “art gallery”, since the surveillance of paint-
ings on the walls is the main task of the guards.
In addition, if our problem deals with positioning
point lights, the main concern is to illuminate the
walls.
Even though covering the edges appears a sensible
variation of the classic art gallery problem, it has
received very little attention. To the author’s know-
ledge, only O’Rourke (1987) mentions edge cover-
ing, when he acknowledges the distinction between
the two covers.
The content of this paper is as follows. Worst cases,
relations with interior covering, and complexity of
the edge-covering problems are analyzed in Sect. 2
for polygons with and without holes. In Sect. 3 we in-
troduce the restriction that each edge beentirely vis-
ible from at least one guard, analyze the worst cases
of this subproblem, and compare it with unrestricted
edge covering. In Sect. 4 we present an algorithm
for entire visibility edge covering and its complex-
ity analysis. In Sect. 5 we modify the algorithm for
external visibility (or illumination) of polygons. In
Sect. 6 we summarize the results obtained and dis-
cuss further lines of research.

2 Edge cover: comparison with
interior cover, bounds, and
complexity

In this section we compare minimum edges and in-
terior covers for a given polygon and discuss bounds
and complexity for the edge covering problem. Let
EC and ECH indicate the edge-covering problem for
polygons without and with holes and the termwall
guardsindicate the guards required for this purpose
(we cannot use the term “edge guards”, since in “art
gallery” parlance it means guards restricted to the
edges).
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P2

Fig. 1. Three guards are sufficient for covering the edges
of polygon P1, but four are required for covering its inte-
rior. For P2, respectively 7 and 10 guards are required

2.1 Minimum edge and interior covers for
a given polygon

Let GE(P) be the minimum number of wall guards
necessary for covering (the edges of ) a polygonP.
ObviouslyGE(P)≤ G(P), since observing the inte-
rior implies observing the edges. It is not difficult to
find examples for which the minimum covers are dif-
ferent. For polygonP1 (Fig. 1), three guardsG1, G2,
andG3, located anywhere in the areas highlighted,
form the minimum edge cover, but another guard is
necessary for covering the central areaZ. The dif-
ferenceG(P)−GE(P) can assume any value (see
polygonP2 in Fig. 5, where the difference is three).
For the ratioG(P)/GE(P) we have found the fol-
lowing result:
For polygons with holes,G(P)/GE(P) can assume
any value.This statement is proved by the example in
Fig. 2. The polygon in the figure belongs to a family
whereGE(P) is two andG(P) is O(n).
For polygons without holes, the situation seems
to be different. Although we are not able to pro-
duce a proof, we conjecture thatG(P)/GE(P)≤ 2.
A family of polygons such that the ratioG(P)/GE(P)
is arbitrarily near 2 is shown in Fig. 3.
Since the interior-covering problem is still open,
an important question is: if we succeed in finding
a solution to the edge-covering problem for a given
polygon, can we use the wall guards as a basis for
a minimum interior cover?
In some cases, a minimum set of wall guards
also covers the interior ofP, and obviously it is
a minimum set for interior covering as well. For the
case in which the wall guards do not cover the in-
terior, the examples of Figs. 1–3 may suggest that,
when a solution for the EC is known, a solution for
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Fig. 2. Two guardsG1 andG2 are sufficient for edge cover, but covering the interior requires one additional guard for
each area highlighted

Fig. 3. A family of polygons such that the ratioG(P)/GE(P) can be arbitrarily near to 2

Fig. 4a,b.These examples show that, in general, a solution for the IC cannot be obtained from a solution for the EC (a),
or vice versa (b), by deleting or adding some guards

Fig. 5a,b.Worst-case polygonsa Chvátal’s; b Shermer’s. The guards in the figure are minimum sets for both interior
and edge covering

the IC could be obtained by adding some guards, or
an EC solution could be obtained by deleting some
guards of an IC solution. However, in general, it
is impossible to establish such simple relations be-
tween a minimum edge and interior covers.
In fact, let us consider the polygon in Fig. 4a. In
this case,G1, G2, andG3 are a solution for the EC,
but not for the IC, since regionZ is not covered.
However, a minimum set of guards for the IC is not
obtained by adding a fourth guard for coveringZ:
only three guards such asG′1, G′2 and G′3 are suf-
ficient. Conversely, let us consider the polygon in
Fig. 4b. It requires four guards for the IC and three
for the EC. The four guards of Fig. 4b are a solution
for the IC, but no subset of three guards covers the
edges.

Even though interior and edge covers appear to be
close relatives, general simple ways for transform-
ing a solution for one problem into a solution for the
other do not seem to exist.
The situation could be different if we were content
with an approximate solution with guaranteed per-
formance. IfG(P)/GE(P)≤ 2 is true for polygons
without holes, a minimum set of guards for the IC
is also a solution for the EC, which contains at most
twice as many guards as are strictly necessary.

2.2 “Art gallery” theorems for edge cover

Let ge(n) andge(n,h) be the worst-case minimum
numbers of guards necessary to cover the edges of
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polygons withn edges without holes and withh
holes, respectively. We have:

−ge(n)= g(n)= bn/3c
−ge(n,h)= g(n,h)= b(n+h)/3c .
In fact, ge(n) ≤ g(n), otherwise there would be
some polygons (the worst-case polygons for the EC)
that require more guards for edge covering than for
interior covering. Chvatal’s (1975) comb polygon
(Fig. 5a), a worst case for the IC, is also a worst case
for the EC, and thus the equal sign holds. The equa-
tion ge(n,h) ≤ g(n,h) must also hold, otherwise
a contradiction follows. It is easy to see (Fig. 5b)
that the polygons used as worst cases for the ICH
(O’Rourke 1987) also requiresb(n+h)/3c guards
for the ECH, and thus the bound is tight.

2.3 Computational complexity of edge
covering

Many covering and decomposition problems have
been shown to be NP-hard: see O’Rourke (1987),
Shermer (1992) and Culberson and Reckhow (1994).
We have found thatthe EC and the ECH are both
NP-hard. This can be shown by verifying that the
proofs given by Lee and Linn (1986) for the IC and
by O’Rourke and Supowit (1983) for the ICH also
apply to the EC and the ECH. Both proofs are based
on a reduction from the NP-complete 3-SAT prob-
lem. Given an instance of 3-SAT (a boolean expres-
sion formed by the product (AND) of sums (OR) of
exactly 3 variables), the proofs construct in polyno-
mial time polygons that can be covered byk guards if
and only if the boolean expression is satisfiable (that
is, there is an assignment of TRUE and FALSE val-
ues for the variables such that the whole expression
is TRUE). Although the constructions cannot be re-
ported here in full detail, we sketch the general ideas
and show that they also apply to the edge-covering
problems.

2.4 Polygons with holes

Let us consider the construction for polygons with
holes and verify that it is also a reduction from 3-
SAT to the ECH. For each boolean variable, the
polygon P has a region shaped as a staircase cor-
ridor such that a guard located near a corner can

fully observe the interior (or the walls) of two ad-
jacent straight segments of the corridor (Fig. 6a).
Let us label the corners with consecutive integers.
Two minimal arrangements of guards are possible
to cover the interior (or the walls) of the whole cor-
ridor. One arrangement, let us say that with guards
located at theoddcorners, corresponds to the TRUE
assignment (Fig. 6b); the other, with guards located
at theevencorners, corresponds to the assignment
FALSE (Fig. 6c).
It can be shown that the corridors can be bent and
crossed without affecting the interior coverage prop-
erties. It is easy to see that this is also true for edge
covering. The corridor is bent to form a loop for
each variable. We must now construct, for each sum
of three terms, a new part ofP that is observed by
the guards in the corridors if and only if the sum is
TRUE.
Let us consider the sum̄x1+ x2+ x3. We construct
a triangle (Fig. 6e) that shares three small areas of
a corner with one corner of each corridor corre-
sponding to the variablesx1, x2, andx3. In this case,
the corner of the corridor corresponding tox1 must
be an even corner, which thus has a guard in it if and
only if x1 is FALSE, and the corners corresponding
to x2 andx3 must be odd. With this construction, one
or more corridor guards cover the interior (and the
walls) of the triangle if and only if the sum̄x1+ x2+
x3 is TRUE. By repeating this construction for all the
sums, we obtain the complete polygon whose edges
are covered byk guards (half of the corners of the
corridors) if and only if the boolean expression is sat-
isfiable. O’Rourke and Supowit have shown that the
construction can be performed inO(mn) time withm
sums andn variables.

2.5 Polygons without holes

Let us consider the proof by Lee and Linn for poly-
gons without holes. First, they reduce 3-SAT to the
IC with guards restricted to the vertices. Let us verify
that this is also a reduction to the EC with guards re-
stricted to the vertices. The upper part of the polygon
they construct hasm large concavities, one for each
sum in the boolean expression (Fig. 7a). Three vertex
guards for each concavity are required for observ-
ing the interior (and the walls) of the three spikes.
There are two possible positions for each guard. Po-
sitions t1, t2, t3 and f1, f2, f3 correspond to TRUE
and FALSE values of the first, second, and third lit-
eral of the sum. For instance, if the sum isx̄1+ x2+
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Fig. 6a.The staircase corridor;b, c The TRUE and FALSE assignments;d The walls of the triangle are visible from the
corridor guards if and only if̄x1+ x2+ x3 is TRUE

Fig. 7a. The triangular concavity emulating a sum;b The pattern that forces the consistency in the sums of the truth
assignment of one variable;c The final polygon for two sums

x3 andx1= x2= 0 andx3= 1, the guards are located
at t1, f2, andt3. At least one guard must be in ati
position, otherwise parts of the concavity (and of its
walls), as the cornerC, cannot be observed by these
guards. Thus the cover of this concavity is minimal if
and only if the sum is TRUE.
The lower part of the polygon forces the coverage to
be minimal if and only if the truth assignment of the
variables are the same in the various sums (Fig. 7b).
For each variable there are two “wells”, each con-
taining a set of spikes, and another spike, containing
point p, requiring one guard located at pointF or
point T to be observed. The first well contains a set
of spikes that are covered if and only if the variable
is FALSE in all sums. In fact, the dotted lines joinF
to all the positions of the guards in the upper concav-
ities corresponding to the assignment FALSE to the
variable. The second well has a similar purpose for

the assignment TRUE. Figure 7b shows the wells in
the case of a variable present in two sums. From this
arrangement it follows that, if and only if a variable is
TRUE (FALSE) in all sums, the upper guards cover
the interior and walls of the spikes in the right (left)
well. Further, only one other guard located atF (T )
is required for covering the interior and walls of the
spikes of the other well and the spike containingp.
Therefore, if and only if an assignment of the vari-
ables exists that makes each sum TRUE, the minimal
vertex cover of both the interior and walls consists
of K = 3m upper guards plusn guards for the bot-
tom spikes plus one other guard at vertexx for the
interior and walls of the uncovered wells. A sketch
of the whole polygon for two sums is shown in
Fig. 7c (the spikes are omitted for simplicity). It is
easy to see that the construction takes polynomial
time.
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Fig. 8a,b.Two examples for which the entire edge cover requires one more guard. The points indicate possible locations
of the guards
Fig. 9a,b.The examples show thatGEE(P)/GE(P) is O(n) for polygons without and with holes

All the arguments of Lee and Linn are based on
points lying on the edges, and they also apply to any
EC with vertex guards, which thus is NP-complete.
Finally, the EC with point guards can be shown to
be NP-hard by Aggarwal’s argument (Lee and Linn
1986).

3 The entire visibility edge-covering
problem

Now we introduce a restriction that could make prac-
tical sense for the edge-covering problem. We re-
quire that each edge must be seen in its entirety by
at least one guard. Let the EEC and the EECH be the
problems of finding a minimum cover of this kind
for polygons without and with holes. In this section

we compare these problems with unrestricted edge
cover, and we discuss their worst cases and computa-
tional complexity.

3.1 Entire edge cover versus edge cover for
a given polygon

Let GEE(P) be the minimum number of guards re-
quired for the entire edge cover of a polygonP.
Obviously GEE(P) ≥ GE(P). In Fig. 8 we show
a polygon with holes and another without holes
where these minimum numbers are different. Con-
necting polygons such as those shown in the figure,
we can easily obtain cases whereGEE(P)−GE(P)
is O(n).
What about the ratioGEE(P)/GE(P)? Were it
bounded, a solution of the restricted problem could
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be an approximate solution with guaranteed per-
formance for edge cover. Unfortunately, this is not
the case. The ratio is unbounded for polygons both
with and without holes as shown by the examples
of Fig. 9. Two unrestricted wall guardsG1 andG2
are sufficient in both cases, but each upper edgeE1,
E2, . . . En requires a different guard to be observed
entirely. If the heighth is reduced, the example can
be extended to any number of concavities, which
shows thatGEE(P)/GE(P) can assume any value.
The modified polygon in Fig. 9b, with tiny triangular
holes conveniently located in the shaded area, shows
that GEE(P)/GE(P) could beO(n) for polygons
with holes also.
Observe thatGEE(P) could be equal (Fig. 5a),
greater (Fig. 8) or smaller (Fig. 2) thanG(P).
Finally, in general one solution for the EEC cannot
be obtained from a solution for the EC, or vice versa,
by deleting or adding guards, as Fig. 8b may sug-
gest. This is shown by the example in Fig. 8a. No
minimum set containingGEE(P) = 3 guards can
be obtained by adding one guard to theGE(P)= 2
wall guards shown, and no two guards subset of the
GEE(P)= 3 guards shown covers the edges.

3.2 Art gallery theorems for entire edge
cover

Let gee(n)andgee(n,h) be the worst-case minimum
numbers of guards required by the EEC and EECH.
For polygons without holes we have found that

gee(n)= ge(n)= g(n)= bn/3c .
Proof. First, gee(n) ≤ bn/3c. This is shown by the
classic proof of the art gallery theorem given by Fisk
(1978). Fisk triangulatesP without adding new ver-
tices and exploits the existence of a three-coloring
of the vertices. At least one color affects a set of
m≤ bn/3c vertices. These vertices can be selected
as interior guards, since each triangle of the triangu-
lation has a vertex belonging to this set. Since each
edge belongs entirely to one triangle, it is entirely
observed by at least one of these guards, which there-
fore are also entire wall guards. The Chvátal comb
polygon is also a worst case for the EEC, thus the
bound is tight.

Finding tight bounds for polygons with holes is more
difficult. For the case of one hole, we have found that

gee(n,1)= b(n+2)/3c .

 

(a) (b)

Fig. 10a.Three edges at most can be entirely observed by
guards located in the highlighted regions.b At least four
guards are required to observe the edges

Proof.It is easily seen that

b(n+h)/3c = ge(n,h)≤ gee(n,h)
gee(n,h)≤ b(n+2h)/3c .

In fact, ge(n,h)≤ gee(n,h), otherwise there would
be polygons (the worst case polygons for the EC)
that require more guards for unrestricted edge cov-
ering than for restricted edge covering. The bound
b(n+2h)/3c, first established by O’Rourke (1987)
for the ICH and combinatorial guards, is easily seen
to apply to our case. By insertingh zero width
“bridges” between vertices belonging to uncon-
nected parts of the boundary, a polygonP with
h holes is reduced to a simply connected polygon
containing all the original edges. This allows us
to use thege(n) bound for a polygon withn+2h
vertices.

For the case of one hole,b(n+2)/3c guards are
sometimes necessary, as shown by the example in
Fig. 10. No guard in this polygon can entirely ob-
serve four edges or more. It is possible to entirely
observe three edges from the regions highlighted in
Fig. 10a. It follows that at least four guards are re-
quired for observing the 10 edges (Fig. 10b). Ob-
serve that the boundb(n+h)/3c = 3 would be in-
correct in this case. The polygon is a member of
a family composed of a regular polygonal hole in-
side a larger regular polygon with the same number
of edges. If the polygons are sufficiently close and
n= 2m= 3p+1, withmandp integers,b(n+2)/3c
guards are required. The only triangulation possi-
ble for these polygons is an example of Shermer’s
though triangulation(O’Rourke 1987).
Is this result in agreement with the boundb(n+
h)/3c for both the ICH and the ECH? The proofs
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given by Bjorling-Sachs and Suvaine (1995) and
Hoffman et al. (1991) cannot be extended to the
EECH. Hoffmann et al. station each guard at the
intersection of at most three convex polygons. In
general, each convex polygon covers only a part of
an edge, thus Hoffmann’s guards could be insuffi-
cient for entire edge covering. The proof by Bjorling-
Sachs and Suvain reduces the original polygon to
a polygon without holes andn+h vertices. Each step
of the proof deletes a hole using one of three possi-
ble constructions: two of them split an edge in two,
which in the new polygon is not guaranteed to be
observed entirely by the same guard. The polygon
presented in Fig. 10 allows only the edge-splitting
constructions.
Forh≥ 2, we have not been able to find polygons re-
quiring more thanb(n+h)/3c guards, even if they
admit only the edge-splitting construction, and we
conjecture that this bound is tight.

3.3 Computational complexity of the EEC
and the EECH

The reduction of 3-SAT to the EC and the ECH also
holds for the EEC and the EECH. In fact, both proofs
construct polygons where each edge is observed en-
tirely by at least one guard.

4 An algorithm for entire edge cover

The entire visibility restriction allows us to discretize
the edge-guarding problem. In this section we de-
scribe an algorithm for both the EEC and the EECH.
Given a polygonP, the algorithm computes a set
of polygonal regions. A minimum set ofGEE(P)
guards can be obtained, independently locating one
guard anywhere in each region. A minor addition
makes the algorithm suitable for the “fortress” or
external guarding problem, where the edges of the
holes are observed from an unbounded region.
The algorithm consists of the following steps:

Step 1.Compute a partitionΠ of P into regionsZi
such that:

– The same setEi = (Ep, Eq, . . . , Et) of
edges is completely visible from all points of
Zi∀i .

– The Zi are maximum regions, i.e.,Ei 6= E j
for contiguous regions.

Step 2.Select thedominant regions. A region Zi is
defined to be dominant if there is no other re-
gion Zj of the partition such thatEi ⊂ E j .

Step 3.Select an optimal (or minimum) solution.
A minimum solution consists of a set of
dominant regionsSj = (Zj 1, Zj 2, . . . , Zjk)
that coversE=∪Ei with the minimum num-
ber of members.

Observe that there could be a minimal solution
containing nondominant regions. For instance, in
Fig. 10a the dominant regions are those highlighted.
The upper guard in Fig. 10b does not lie in a dominant
region. We consider only sets of dominant regions
for two reasons. First, a nondominant region can be
replaced by a dominant region covering the same
edges and some others. Multiple coverage of edges
is preferable, for instance in the case of sensor fail-
ure. Second, we are looking for one optimal solution,
not for all optimal solutions. Considering only the
dominant regions reduces the computations in step 3,
exponentially in the worst case.
It is worth noting that partitionΠ could be obtained
by intersecting thecomplete visibility polygonsof
each edge (the termstrong visibilityis used by Sher-
mer (1992) with the same meaning). Complete visi-
bility polygons can be constructed in linear time for
polygons without holes (O’Rourke 1986), but unfor-
tunately, to the author’s knowledge, no algorithm has
yet been presented for polygons with holes.
We now present the details of the algorithm and the
complexity analysis.

4.1 Step 1. Computing partition Π

We divide P into maximal regionsZi from which
the same set of edgesEi is entirely visible, and la-
bel each regionZi with the setEi , using a visiting
algorithm.
Let us discuss which lines are relevant toΠ. Obvi-
ously, the lines supporting the edges are necessary.
When a guard crosses lineLa as shown in Fig. 11a,
the supported edgeEi becomes entirely visible. Tak-
ing into account occlusions requires other categories
of lines. For instance, if a guard crosses lineLb in
Fig. 11b, vertexvk becomes visible. If there are no
other occlusions, as in Fig. 11b, the entire edgeEi
to which the vertexvk belongs becomes visible. Oth-
erwise, as in the case of Fig. 11c, the edge becomes
only partially visible. Thus lineLb is potentially rel-
evant toΠ.
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Fig. 11a–d.Examples of lines that change the visibility condition of an edge

Fig. 12.EdgeEj has three occlusions in the aspect relative toG

For dealing with such cases, we computeΠ as
a refinement of a more detailed partitionΠ′, which
also contains potentially relevant lines such asLb
and auxiliary lines. These lines are not relevant toΠ,
but change the state of occlusion of an edge, as for
instanceLc in Fig. 11d.
Before defining partitionΠ′, let us first define theas-
pectA(G) of a pointG belonging toP.

A(G)= ((Eh,nh), (Ek,nk), . . . , (Eq,nq)) ,

whereEh, Ek, . . . , Eq are the edges fully or partially
visible from G, andnh,nk, . . . ,nq are the numbers
of occlusions of these edges. For instance, the aspect
relative to pointG in Fig. 12 is:

A(G)= ((Ei ,0), (Ej ,3), (Ek,0), (Eh,0), . . . )

Π′ is defined as the partition that dividesP into re-
gionsZ′i such that:

– All points of Z′i have the same aspectA i .
– Z′i are maximum regions, i.e.,A i 6= A j for con-

tiguous regions.

Clearly, to belong to the same region ofΠ′ is
a necessary, but insufficient, condition for two points
to belong to the same region ofΠ.

ComputingΠ′ is strictly related to the computation
of theaspect graphof a set of polygons, a problem
not discussed in the literature. The vertices of the
aspect graph represent all the topologically distinct
views, or aspects, of an object. The graph structure
of the aspect graph is the dual graph of the parti-
tion of the viewing space into regions whose points
share the same aspect. The edges of the graph repre-
sentvisual events, that is, qualitative or topological
changes in the aspects of adjacent regions. Gualtieri
et al. (1989) give algorithms for computing aspect
graphs in two dimensions for one convex polygon
and in three dimensions for polyhedra, solids of revo-
lution, and other curved objects. For further details,
the interested reader is referred to Gigus et al. (1991)
and Plantinga and Dyer (1990).
We now present the catalogue of lines that form par-
tition Π′ and the associated visual events or changes
in the aspects. A line is said to beactiveif it contains
one or moreactive segments. An active segment is
the boundary between points whose aspects are dif-
ferent. It is not difficult to verify that all active lines
are those that join two vertices in the cases given in
Table 1. The active segments are highlighted with
a thick line. The arrows mark thepositive crossing
directions. The positive visual eventis the change
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v
Ei

v

Ei

v

v Ej

Ejv

v
Ei

Positive visual event Negative visual event

Ej

Ej

Add (Ei, 0) Delete (Ei, 0)

 nj←nj–1

Add (Ei, 0) Delete (Ei, 0)

 nj←nj+1

 ni←ni–1

if Ej is already in the aspect:
 nj←nj+1;
otherwise, add (Ej, 1)

 ni←ni+1

if nj =1:
delete (Ej, 1);
otherwise, nj←nj–1 

Ei

if Ej is already in the aspect:
 nj←nj+1;
otherwise, add (Ej, 1)

if nj =1:
delete (Ej, 1);
otherwise, nj←nj–1 

 ni←ni–1  ni←ni+1

if Ej is already in the aspect:
 nj←nj+2;
otherwise, add (Ej, 2)

if nj =2:
delete (Ej, 2);
otherwise, nj←nj–2 

 A←B means that B replaces A in the aspect.

a

b

c

d

e

Active lines
Table 1. Catalogue of
lines for partitionΠ′

of aspect of a point which crosses the active seg-
ment along the positive direction; a similar definition
holds for thenegative visual event. For simplicity,
in cases d and e, each with two active segments,
we only indicate the visual event of the left seg-
ment, since the other is obtained by changing the
subscripts. Observe that:

– The positive visual events of cases a and b always
produce full visibility of a new edge.

– Positive visual events of cases c and d produce
full visibility of a new edge only if the previous
number of occlusions of this edge is one.

– Visual events of case e only affect the occlusion
numbers.

ComputingΠ requires the following substeps:

1a. Computing the active segments ofΠ′
1b. ConstructingΠ′
1c. RefiningΠ′ intoΠ with a visiting algorithm.

1a. Computing the active segments.To find the ac-
tive lines we must considerO(n2) pairs of vertices

(vi , v j ). As is easily seen from Table 1, two condi-
tions must be satisfied for a line to be active:

1. The line must not cross the boundary ofP at both
vi andv j (examples of vertices that do not pro-
duce active lines are shown in Fig. 13).

2. Segmentviv j must belong entirely to P.

Condition 1 can be checked in constant time for
each pair(vi , v j ). Condition 2 can be verified and
the active segments can be found inO(n2) time
with Welzl’s algorithm for constructing thevisibility
graphof a set of line segments (O’Rourke 1987), i.e.,
the graph whose edges represent visibility among
the vertices of the segments. The algorithm requires
O(n2) time for a topological sort of the(n(n−1))/2
slopes of the oriented lines joining each pair of ver-
tices (one line for each pair), and an angular sweep
that finds the first segment crossed (if any) in con-
stant time for each oriented line. For our purposes we
need only perform a second angular sweep with re-
versed directions of the lines. We mark each active
segment with the corresponding visual event, which
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vi vj

vi vj

Fig. 13.Examples of vertices visible to each other that do
not produce active lines

can be computed in constant time. Thus,O(n2) ac-
tive segments are obtained inO(n2) time.
1b. Constructing partitionΠ′. A data structure con-
taining vertices, edges, and regions of partitionP′
and pointers representing inclusion could be con-
structed by Edelsbrunner’s (1987) classic algorithm
in O(n4) time. The partition can also be constructed
by a plane sweep algorithm inO(p log p) time,
where p is the number of vertices of the partition
(regions and edges also areO(p)). This approach,
which makes the computation time of the algorithm
sensitive to the sizep of the output, has been applied
by Gigus et al. (1991) for constructing a partition of
the plane with segments of straight lines and conics.
We refer the reader to the original paper for further
detail. For each edge ofΠ′ lying on an active seg-
ment, we store the positive direction and the visual
event in the data structure.
The total time for computing partitionΠ′ is O(n2+
p log p).
1c. ComputingΠ′ from Π. There can be adjacent
regions inΠ′ with the same set of completely visi-
ble edges. These regions are separated by: (1) lines
of type e, which only affect the occlusion numbers
and (2) some lines of types c and d. To obtainΠ,
these construction lines must be removed and the
regions separated by these lines must be merged.
While traversingΠ′, partition Π is computed as
follows.
We start at an arbitrary region, compute its aspect,
and traverseΠ′ with a depth-first search on the dual
graph. The aspect of each new region traversed is
obtained by updating the aspect of the previous re-
gion with the positive or negative visual events at
each boundary, according to the crossing direction.
Thus, at each boundary of the partition, we are able
to verify whether the visual event of an edge actu-
ally creates (or deletes) a fully visible edge. If this is
not the case, we update the structure of the partition
by deleting the edge and merging the two adjacent

regions. Each region is marked with the set of fully
visible edges, and each edge with the positive cross-
ing directions, which indicate the region with a larger
set of fully visible edges.
Computing the aspect of the starting region is equiv-
alent to solving a 2D hidden line problem, and takes
O(n2) time (Preparata and Shamos 1985). The time
required for traversing the partition isO(p) (Baase
1988). The dimension of each aspect isO(n); there-
fore we can update the aspect and store the fully
visible edges at each boundary crossing inO(n)
time. Updating the structure of the partition takes
a constant time at each merging. The total time for
visiting Π′, computingΠ, and storing all aspects is
O(n2+ pn).
The overall time bound of step 1 isO(n2+ p log p+
pn).

4.2 Step 2. Computing the dominant
regions

To findd dominant zones, we must compare the sets
of fully visible edgesEi of each regionZi . This pro-
cess can be shortened if we observe that:

1. A necessary condition for a regionZi of Π to be
dominant is thatE j ⊂ Ei for all the regionsZj ad-
jacent toZi , or, in other words, all the positive
crossing directions of the edges ofZi lead to the
interior of the region (except for the edges ofP).

2. All the edges ofZi (except for the edges ofP) be-
ing due to cases a and b of Table 1, i.e., they lie
on lines supporting edges ofP, condition 1 is also
sufficient.

The first statement is obvious. For the second, it is
sufficient to observe that, if the edges ofZi lie on the
lines supporting the edgesEp, Eq, . . . , Ek, no other
region is able to observe this set of edges. Thus, to
find the dominant regions:

– First visit all regions ofΠ and check condition
1 for selectingc candidate dominant regions in
O(p) time. Regions also satisfying condition 2
are immediately recognized as dominant.

– PerformO(c2) comparisons inO(nc2) time to se-
lectd dominant zones.

Steps 1 and 2 of the algorithm requireO(n2+
p log p+ pn+nc2) time. In Fig. 14 we show both
partitionΠ′ andΠ for a polygon with nine edges and
one hole and the five resulting dominant regions.
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E1

E2

E4

E5

E6

E7E8
E9

E3

E1

E2

E4

E5

E6

E7
E8E9

E3

(a)

(b)

Z1

Z2

Z3

Z4 Z5

Fig. 14a,b.Partition5′ (a) and partition5 (b) of a poly-
gon. The active segments of5′ aresolid; the remaining
parts of the active lines aredotted. Five dominant zones
result. Three of them(Z1,Z3,Z5) are immediately iden-
tified by the positive crossing directions of the edges

4.3 Step 3. Finding an optimal solution

An optimal (or minimum) solution is a set of domi-
nant regions that coversE with the minimum number
of members. This is an instance of the well-known
set-covering problem. In general, given a setS and
a number of subsets, an optimal cover is a set of sub-
sets with a unionS that minimizes the sum of the
costs of the subsets. In our case, all costs are equal.
The corresponding decision problem (is there a cover
with k subsets or less?) is NP-complete (Parker and
Rardin 1988).
Numerous practical situations have been modeled as
set-covering problems, and a number of algorithms
for set covering have been presented (see for in-
stance Salkin and Mathur 1989). When, as in our
case, only one minimal solution is required, much
can be pruned. This is, for instance, the case of an
algorithm developed for the minimization of switch-
ing functions; details can be found in Muroga (1979),
and the complexity(O(n2d)) has been determined
by Laurentini (1996).
A nearly optimal solution obtained with a polynomial
selection algorithm could be an interesting alterna-
tive. Such a solution can be obtained with a greedy

heuristic, which selects the region covering the
largest number of uncovered edges each time.
A straightforward implementation of this algorithm
is O(n p2). Although its performance cannot be guar-
anteed to be data independent, it does not depends
on the number of edgesn. Let GEEG(P) be the
number of regions obtained by the greedy algorithm
and letr be the largest number of edges observed
by a dominant region ofP. It can be shown that
(Nemhauser and Wolsey (1988):

GEEG(P)/GEE(P)≤ 1+ lg(r)

Observe thatr could be small even for very large val-
ues ofn.

5 The case of exterior visibility

A small addition makes Table 1 also fit for the case
where only the polygonal holes are left and the re-
gion where the guards can be located is unbounded.
This has been called the fortress problem when only
one polygon is present (O’Rourke 1987). In this
case, the active segments could be unbounded. In-
specting Table 1, we can verify that this only affects
case d. If the right active segment is unbounded, the
positive and negative visual events diminish to the
parts affectingEi . Thus, an enhanced table including
the new entry d’ shown in Fig. 15 also holds for the
case of exterior visibility. The rest of the algorithm is
unaffected.

6 Summary and discussion

We have proposed and explored the problem of
covering the edges of a polygon with a minimum
set of guards as an alternative to the classic art
gallery problem, which requires complete interior
cover. The minimum edge and interior covers have
been compared for a given polygon. Even though
a minimum set of wall guards could also cover the
interior, for polygons with holes, the interior guards
could beO(n) times the wall guards. For polygons
without holes, we conjecture that interior guards are
at most twice the number of the edge guards. No sim-
ple rule seems to exist for obtaining a minimum set
of interior guards starting from a minimum set of
edge guards or vice versa.
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v

Ei

 ni←ni–1  ni←ni+1d’

Positive visual event Negative visual event

(a)

E

Z1
Z2

Z3 p

Z1

(b)

Z2

Z3

Z4

15

16

Fig. 15.Table 1 fits the case of exterior visibility of polygons with the addition of this entry

Fig. 16a.There are infinite pairs of maximum regions Z1 and Z2, depending on pointp. Region Z3 is necessary for covering
E; b a solution for the ECH is obtained by locating two guards in the maximum regions Z1 and Z2 (or Z2 and Z4)

The worst-case numbers of guards have been found
to be equal for edge and interior cover, and the edge-
covering problem to be NP-hard for polygons with
and without holes.
For the edge-covering problem, a restriction has
been proposed that makes practical sense. The en-
tire edge-covering problem requires each edge to be
entirely visible from at least one guard. This prob-
lem is also NP-hard. For polygons without holes, the
worst-case number of guards isbn/3c, as for the un-
restricted problem. For polygons with one hole, we
have found that at mostb(n+2)/3c guards are al-
ways sufficient and sometimes required. For more
than one hole, we conjecture that isb(n+h)/3c is the
tight bound.
We have described an algorithm for the entire edge
covering problem. It computes a set of polygonal re-
gions where the guards of a minimum set can be
independently located. The algorithm is also suit-
able for the fortress or external guarding problem.
The last step of the algorithm is an instance of the
set-covering problem, exponential in the worst case.
A greedy selection supplies nearly optimal solutions
in polynomial time within a factor dependent only
on the logarithm of the largest number of edges ob-
served by a guard, and this factor is independent
of n.

In practice, placing visual sensors is likely to have
to satisfy additional constraints. A feature of the al-
gorithm described is that it can easily be modified
to take geometrical restrictions into account. For in-
stance, a maximum distance and a minimum distance
from each point observed could be required. This
constrains the guards required for observing each
edge into a region whose boundary lines can be in-
serted intoΠ for obtaining a modified partitionΠ∗
of P.
We have observed that simple ways for deriving in-
ternal guards from wall guards do not seem to exist.
This suggests some hope for solving for edge cover-
ing some of the problems unsolved for interior cov-
ering. Many lines of research could be explored for
edge covering, such as:

– Attempting to construct exact algorithms, even if
they become exponential in the worst case.

– Attempting to construct approximate algorithms
with guaranteed performance.

– Looking for lower bounds for the edge guards of
a given polygon. This would enable us to eval-
uate the quality of an approximate solution for
a given polygon. It could be satisfactory even if
it is supplied by approximate algorithms with no
guaranteed performance.
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– Looking for solutions for particular classes of
polygons. For instance, in unrestricted edge cov-
ering, there are generally infinite sets of mutu-
ally dependent regions where minimum sets of
guards can be located (Fig. 16a). However, there
is a finite number of sets of independent maxi-
mum regions for some polygons, as for the case
of entire visibility (Fig. 16b). Constructing algo-
rithms for such polygons could be a much easier
task.
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