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The standard “art gallery” problem con-
sists in stationing a minimum set of guards
in a polygonP so that each point oP is
seen by at least one guard. We introduce
and explore the edge-covering problem; the
guards are required to observe the edges @
P; metaphorically the paintings on the walls
of the art gallery, and not necessarily every
interior point. We compare minimum edge
and interior covers for a given polygon and
analyze the bounds and complexity for the
edge-covering problem. We also introduce
and analyze a restricted edge covering prob
lem, where full visibility of each edge from
at least one guard is required. For this prob-
lem we present an algorithm that computes
a set of regions where a minimum set of
guards must be located. The algorithm can
also deal with the external visibility of a set
of polygons.
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1 Introduction

Problems of visual sensor placement arise in many
computer vision areas such as object recognition or
reconstruction, robotic tasks, and area surveillance.
Although these are generally 3D problems, in some
cases, such as the surveillance of buildings, we can
restrict our considerations to 2D areas.

The research in this area was triggered by &habs

“art gallery” Theorem (1975). He proved that at most
g(n) = | n/3] point guards are required for covering
a simple polygorP with n edges. The word polygon
specifies a closed set including interior and boundary
points. Two points of a polygoR arevisible from
each other if the line segment connecting the points
lies entirely inP. A polygonP is coveredby a set of
viewpoints, orguards lying in P, if each point inP

is visible from at least one guard. Guards can lie in
restricted positions (the vertices for instance); if not,
they arepointguards.

The upper tight boundy(n, h) = [(n+h)/3] for
covering polygons withh polygonal holes and
edges, a conjecture for about 10 years, has been in-
dependently proven by Bjorling-Sachs and Suvaine
(1995), and Hoffman et al. (1991).

Many variations or restricted versions of the prob-
lem have been considered. The reader is referred
to O'Rourke (1987), Shermer (1992) and Urrutia
(1996) for comprehensive surveys. Most of the prob-
lems in this area can also be interpreted as illumina-
tion problems, where point lights replace the guards.
In spite of the success in finding the worst-case num-
bers of guards, theminimum cover problenhat is,

the practical problem of stationing a minimum set of
G(P) guards in a given polygoR, is still open. We
use the terms ICH and IC to refer to the minimum
cover problems for the interior of polygons with and
without holes.

O’Rourke and Supowit (1983) have shown that the
decisionproblem corresponding to ICH (give®?, is
there a cover of with k or fewer guards?) is NP-
hard. The same result for the IC has been obtained by
Lee and Lin (1986).

Algorithms have been constructed for many non-
polynomial problems. They work sufficiently well
with the usual inputs, even though some unlikely
worst case might occur. This is not the case for IC
and ICH: at present, no exact algorithm for finding
and locating a minimum set of guards in a given
polygon has been found. Another possible approach
is to construct approximate algorithms that can sup-
ply solutions close to the optimal. Also this approach
seems unable to cope with the elusive nature of
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IC and ICH, since the current approximate guard
placing algorithms have no guaranteed performances '
int the worst case (Laurentini 1996).

The problem addressed in this paper is diffen

P1

ent from the classic IC and ICH. We call it the By
edge-covering problepsince our minimum set of Gs

GE(P) guards must only cover thedgesof the ANN ’

polygon P, neglecting possible uncovered inter- G1

nal regions. This problem is in keeping with thg Fig. 1. Three guards are sufficient for covering the edges
name “art gallery”, since the surveillance of paint{i of polygon Py, but four are required for covering its intey
ings on the walls is the main task of the guards. "o For Py, respectively 7 and 10 guards are required
In addition, if our problem deals with positioning
point lights, the main concern is to illuminate the
walls.
Even though covering the edges appears a sensibB1 Minimum edge and interior covers for
variation of the classic art gallery problem, it has i
received very little attention. To the author’s know- a given polygon
ledge, only O’'Rourke (1987) mentions edge cover-
ing, when he acknowledges the distinction betweehet G E(P) be the minimum number of wall guards
the two covers. necessary for covering (the edges of) a polydon
The content of this paper is as follows. Worst caseQbviouslyG E(P) < G(P), since observing the inte-
relations with interior covering, and complexity of rior implies observing the edges. It is not difficult to
the edge-covering problems are analyzed in Sect. fnd examples for which the minimum covers are dif-
for polygons with and without holes. In Sect. 3 we in-ferent. For polygorP; (Fig. 1), three guardé,, Go,
troduce the restriction that each edgecdirely vis- and Gs, located anywhere in the areas highlighted,
ible from at least one guard, analyze the worst caseferm the minimum edge cover, but another guard is
of this subproblem, and compare it with unrestrictechecessary for covering the central a2aThe dif-
edge covering. In Sect. 4 we present an algorithnferenceG(P) — GE(P) can assume any value (see
for entire visibility edge covering and its complex- polygonP; in Fig. 5, where the difference is three).
ity analysis. In Sect. 5 we modify the algorithm for For the ratioG(P)/G E(P) we have found the fol-
external visibility (or illumination) of polygons. In lowing result:
Sect. 6 we summarize the results obtained and dig-or polygons with holesG(P)/G E(P) can assume
cuss further lines of research. any valueThis statementis proved by the example in
Fig. 2. The polygon in the figure belongs to a family
whereG E(P) is two andG(P) is O(n).
For polygons without holes, the situation seems

2 Edge cover: comparison with to be different. Although we are not able to pro-
: . duce a proof, we conjecture th@t(P)/G E(P) < 2.
Interior C_O\/er’ bounds, and Afamily of polygons suchthatthe rati®(P) /G E(P)
complexity is arbitrarily near 2 is shown in Fig. 3.

Since the interior-covering problem is still open,

an important question is: if we succeed in finding
In this section we compare minimum edges and ina solution to the edge-covering problem for a given
terior covers for a given polygon and discuss boundpolygon, can we use the wall guards as a basis for
and complexity for the edge covering problem. Leta minimum interior cover?
EC and ECH indicate the edge-covering problem foin some cases, a minimum set of wall guards
polygons without and with holes and the tewall  also covers the interior oP, and obviously it is
guardsindicate the guards required for this purposea minimum set for interior covering as well. For the
(we cannot use the term “edge guards”, since in “artase in which the wall guards do not cover the in-
gallery” parlance it means guards restricted to theerior, the examples of Figs. 1-3 may suggest that,
edges). when a solution for the EC is known, a solution for
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Fig. 2. Two guardsG; and G are sufficient for edge cover, but covering the interior requires one additional guard for
each area highlighted

Fig. 3. A family of polygons such that the rati®(P)/G E(P) can be arbitrarily near to 2

Fig. 4a,b.These examples show that, in general, a solution for the IC cannot be obtained from a solution forahe EC (
or vice versalf), by deleting or adding some guards

Fig. 5a,b. Worst-case polygona Chvatal's;b Shermer’s. The guards in the figure are minimum sets for both interior
and edge covering

the IC could be obtained by adding some guards, dEven though interior and edge covers appear to be
an EC solution could be obtained by deleting somelose relatives, general simple ways for transform-
guards of an IC solution. However, in general, iting a solution for one problem into a solution for the
is impossible to establish such simple relations beether do not seem to exist.

tween a minimum edge and interior covers. The situation could be different if we were content
In fact, let us consider the polygon in Fig. 4a. Inwith an approximate solution with guaranteed per-
this caseG1, G,, andGg are a solution for the EC, formance. IfG(P)/GE(P) < 2 is true for polygons
but not for the IC, since regiod is not covered. without holes, a minimum set of guards for the IC
However, a minimum set of guards for the IC is notis also a solution for the EC, which contains at most
obtained by adding a fourth guard for coveridg twice as many guards as are strictly necessary.

only three guards such &3, G, and G} are suf-

ficient. Conversely, let us consider the polygon in

Fig. 4b. It requires four guards for the IC and three2.2 “Art gallery” theorems for edge cover

for the EC. The four guards of Fig. 4b are a solution

for the IC, but no subset of three guards covers théet ge(n) andge(n, h) be the worst-case minimum
edges. numbers of guards necessary to cover the edges of
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polygons withn edges without holes and with  fully observe the interior (or the walls) of two ad-

holes, respectively. We have: jacent straight segments of the corridor (Fig. 6a).
Let us label the corners with consecutive integers.

—ge(n) =g(n) = |n/3] Two minimal arrangements of guards are possible

—gein,hy=g(n, h)=[(n+h)/3] . to cover the interior (or the walls) of the whole cor-

ridor. One arrangement, let us say that with guards
In fact, ge(n) < g(n), otherwise there would be Ioca}ted at th@qldcorners, correqundsto the TRUE
some polygons (the worst-case polygons for the EC3ssignment (Fig. 6b); the other, with guards located
that require more guards for edge covering than fopt theevencorners, corresponds to the assignment
interior covering. Chvatal’s (1975) comb polygon FALSE (Fig. 6c).
(Fig. 5a), a worst case for the IC, is also a worst casé can be shown that the corridors can be bent and
for the EC, and thus the equal sign holds. The equarossed without affecting the interior coverage prop-
tion ge(n, h) < g(n, h) must also hold, otherwise erties. It is easy to see that this is also true for edge
a contradiction follows. It is easy to see (Fig. 5b)covering. The corridor is bent to form a loop for
that the polygons used as worst cases for the ICIgach variable. We must now construct, for each sum
(O’'Rourke 1987) also requiregn+h)/3] guards of three terms, a new part ¢? that is observed by

for the ECH, and thus the bound is tight. the guards in the corridors if and only if the sum is
TRUE.
) ) Let us consider the sumy + X + X3. We construct
2.3 Computational complexity of edge a triangle (Fig. 6e) that shares three small areas of
covering a corner with one corner of each corridor corre-

sponding to the variableg, x,, andxs. In this case,

Many covering and decomposition problems havédhe corner of the corridor correspondingxomust
been shown to be NP-hard: see O’Rourke (1987},)e an even corner, which thus has a guard in it if and
Shermer (1992) and Culberson and Reckhow (1994?’.”')/ if x1 is FALSE, and the corners corresponding
We have found thathe EC and the ECH are both 10Xz andxs must be odd. With this construction, one
NP-hard This can be shown by verifying that the OF more corridor guards cover the interior (and the
proofs given by Lee and Linn (1986) for the IC andWalls) of the triangle if and only if the sum + x; +

by O’Rourke and Supowit (1983) for the ICH also X3 is TRUE. By repeating this construction for all the
apply to the EC and the ECH. Both proofs are base§Ums, we obtain the complete polygon whose edges
on a reduction from the NP-complete 3-SAT prob-are covered bk guards (half of the corners of the
lem. Given an instance of 3-SAT (a boolean E,Xpres_(:o_rrldors) ifand only if the boolean expression is sat-
sion formed by the product (AND) of sums (OR) of isfiable. O’'Rourke and Supowit have shown that the
exactly 3 variables), the proofs construct in polyno-construction can be performed@(mn) time withm
mial time polygons that can be coveredkyuardsif ~SUMS anah variables.

and only if the boolean expression is satisfiable (that

is, there is an assignment of TRUE and FALSE val-2.5 Polygons without holes

ues for the variables such that the whole expression , _

is TRUE). Although the constructions cannot be rel-€t us consider the proof by Lee and Linn for poly-
ported here in full detail, we sketch the general idea§9ns without holes. First, they reduce 3-SAT to the

and show that they also apply to the edge_coverin W|th g_uardS I’estl’iCted_ to the Vertices.. Letus Verify
problems. at this is also a reduction to the EC with guards re-

stricted to the vertices. The upper part of the polygon
] they construct hasi large concavities, one for each

2.4 Polygons with holes sum in the boolean expression (Fig. 7a). Three vertex

guards for each concavity are required for observ-
Let us consider the construction for polygons withing the interior (and the walls) of the three spikes.
holes and verify that it is also a reduction from 3-There are two possible positions for each guard. Po-
SAT to the ECH. For each boolean variable, thesitionsty, t,, t3 and f1, f,, f3 correspond to TRUE
polygon P has a region shaped as a staircase coand FALSE values of the first, second, and third lit-
ridor such that a guard located near a corner caaral of the sum. For instance, if the sunkist x, +
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Fig. 6a. The staircase corridob, c The TRUE and FALSE assignmentsThe walls of the triangle are visible from the
corridor guards if and only iky 4+ X2 + X3 is TRUE
Fig. 7a. The triangular concavity emulating a sutm;The pattern that forces the consistency in the sums of the truth
assignment of one variableThe final polygon for two sums

Xz andx; = X, = 0 andxz = 1, the guards are located the assignment TRUE. Figure 7b shows the wells in
atty, fp, andts. At least one guard must be inta the case of a variable present in two sums. From this
position, otherwise parts of the concavity (and of itsarrangement it follows that, if and only if a variable is
walls), as the corne, cannot be observed by these TRUE (FALSE) in all sums, the upper guards cover
guards. Thus the cover of this concavity is minimal ifthe interior and walls of the spikes in the right (left)
and only if the sumis TRUE. well. Further, only one other guard locatedrafT )

The lower part of the polygon forces the coverage tas required for covering the interior and walls of the
be minimal if and only if the truth assignment of the spikes of the other well and the spike containmg
variables are the same in the various sums (Fig. 7bY-herefore, if and only if an assignment of the vari-
For each variable there are two “wells”, each con-ables exists that makes each sum TRUE, the minimal
taining a set of spikes, and another spike, containingertex cover of both the interior and walls consists
point p, requiring one guard located at poiRtor  of K = 3m upper guards plus guards for the bot-
point T to be observed. The first well contains a setom spikes plus one other guard at veriefor the

of spikes that are covered if and only if the variableinterior and walls of the uncovered wells. A sketch
is FALSE in all sums. In fact, the dotted lines jdin  of the whole polygon for two sums is shown in
to all the positions of the guards in the upper concavFig. 7c (the spikes are omitted for simplicity). It is
ities corresponding to the assignment FALSE to theasy to see that the construction takes polynomial
variable. The second well has a similar purpose fotime.
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Fig. 8a,b.Two examples for which the entire edge cover requires one more guard. The points indicate possible locations
of the guards
Fig. 9a,b.The examples show th&E E(P) /G E(P) is O(n) for polygons without and with holes

All the arguments of Lee and Linn are based orwe compare these problems with unrestricted edge
points lying on the edges, and they also apply to angover, and we discuss their worst cases and computa-
EC with vertex guards, which thus is NP-complete tional complexity.

Finally, the EC with point guards can be shown to

be NP-hard by Aggarwal’s argument (Lee and Linn3.1 Entire edge cover versus edge cover for

1986). a given polygon
. - . Let GEE(P) be the minimum number of guards re-
3 The entire visibility edge-covering quired for the entire edge cover of a polygéh

problem Obviously GEE(P) > GE(P). In Fig. 8 we show
a polygon with holes and another without holes

Now we introduce a restriction that could make pracwhere these minimum numbers are different. Con-
tical sense for the edge-covering problem. We renecting polygons such as those shown in the figure,
quire that each edge must be seen in its entirety bye can easily obtain cases wh&& E(P) — GE(P)
at least one guard. Let the EEC and the EECH be this O(n).
problems of finding a minimum cover of this kind What about the raticGEE(P)/GE(P)? Were it
for polygons without and with holes. In this sectionbounded, a solution of the restricted problem could
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be an approximate solution with guaranteed pe
formance for edge cover. Unfortunately, this is no
the case. The ratio is unbounded for polygons bot
with and without holes as shown by the example
of Fig. 9. Two unrestricted wall guards; and G,
are sufficient in both cases, but each upper dége
E,, ... E,requires a different guard to be observes
entirely. If the height is reduced, the example can
be extended to any number of concavities, Which  rig 10a Three edges at most can be entirely observed|by
shows thaG EE(P)/G E(P) can assume any value.| guards located in the highlighted regiobsAt least four
The modified polygon in Fig. 9b, with tiny triangular| guards are required to observe the edges

holes conveniently located in the shaded area, shows

that GEE(P)/G E(P) could beO(n) for polygons

with holes also.

Observe thatGEE(P) could be equal (Fig. 5a),

greater (Fig. 8) or smaller (Fig. 2) th&(P). Proof.ltis easily seen that

Finally, in general one solution for the EEC cannot

be obtained from a solution for the EC, or vice versa (N +M)/3] = ge(n, h) < gedn, h)

by deleting or adding guards, as Fig. 8b may sug- ge€n, h) <[(n+2h)/3].

gest. This is shown by the example in Fig. 8a. No
minimum set containings EE(P) = 3 guards can |
be obtained by adding one guard to tB&(P) =2
wall guards shown, and no two guards subset of th
G EE(P) = 3 guards shown covers the edges.

n fact, ge(n, h) < gedn, h), otherwise there would
be polygons (the worst case polygons for the EC)
g1at require more guards for unrestricted edge cov-
ering than for restricted edge covering. The bound
L(n+2h)/3], first established by O'Rourke (1987)
. for the ICH and combinatorial guards, is easily seen
3.2 Art gallery theorems for entire edge to apply to our case. By inserting zero width
cover “bridges” between vertices belonging to uncon-
nected parts of the boundary, a polygénhwith
Letgegn) andgegn, h) be the worst-case minimum h holes is reduced to a simply connected polygon
numbers of guards required by the EEC and EECHgontaining all the original edges. This allows us
For polygons without holes we have found that to use thege(n) bound for a polygon witm + 2h

en) &) " /3 vertices.

9 .g o) = n/3l o For the case of one hole(n+2)/3| guards are
Proof. First, gegn) < [n/3]. This is shown by the gometimes necessary, as shown by the example in
classic proof of the art gallery theorem given by FlskFig_ 10. No guard in this polygon can entirely ob-
(1978). Fisk triangulate® without adding new ver-  serve four edges or more. It is possible to entirely
tices and gxplons the existence of a three-coloringpserve three edges from the regions highlighted in
of the vertices. At least one color affects a set ofjg. 10a. It follows that at least four guards are re-
m < |n/3] vertices. These vertices can be selectedired for observing the 10 edges (Fig. 10b). Ob-
as interior guards, since each triangle of the trianguserye that the boungn +h)/3] = 3 would be in-
lation has a vertex belonging to this set. Since eacRgrect in this case. The polygon is a member of
edge belongs entirely to one triangle, it is _entlrelya family composed of a regular polygonal hole in-
observed by atleast one of these guards, which thergige 5 larger regular polygon with the same number
fore are also entire wall guards. The @ltal comb  of edges. If the polygons are sufficiently close and
polygo_n is also a worst case for the EEC, thus the, — oq— 3p+ 1, withmandpintegers| (n-+2)/3]
bound s tight. guards are required. The only triangulation possi-

Finding tight bounds for polygons with holes is moreble for these polygons is an example of Shermer’s

difficult. For the case of one hole, we have found thathough triangulation(O’Rourke 1987).
Is this result in agreement with the bount +

gedn,1l)=|(n+2)/3]. h)/3] for both the ICH and the ECH? The proofs
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given by Bjorling-Sachs and Suvaine (1995) andStep 2.Select thedominant regionsA region Z; is

Hoffman et al. (1991) cannot be extended to the defined to be dominant if there is no other re-
EECH. Hoffmann et al. station each guard at the gion Z; of the partition such thd; C E;.
intersection of at most three convex polygons. InStep 3.Select an optimal (or minimum) solution.
general, each convex polygon covers only a part of A minimum solution consists of a set of
an edge, thus Hoffmann’s guards could be insuffi- dominant regionsS; = (Zj1, Zj2, ... , Zjk)
cientfor entire edge covering. The proof by Bjorling- that cover€& = UE; with the minimum num-
Sachs and Suvain reduces the original polygon to ber of members.

a polygon without holes ani+ h vertices. Each step Observe that there could be a minimal solution

of the proof deletes a hole using one of three possi

ble constructions: two of them split an edge in two,CONtaININg nondominant regions. For instance, in

which in the new polygon is not guaranteed to b ig. 10a the dominant regions are those highlighted.

; he upper guard in Fig. 10b does not lie in adominant
observed entirely by the same guard. The pOIngregion. We consider only sets of dominant regions

resented in Fig. 10 allows only the edge-splittin . . :
P : g y 9e-SPMING o two reasons. First, a nondominant region can be
constructions. ; ; .
replaced by a dominant region covering the same

Forh > 2, we have notbeen able to find polygons re edges and some others. Multiple coverage of edges
quiring more tharL(n + h)/3] guards, even if they is preferable, for instance in the case of sensor fail-

admit only the edge-splitting construction, and we . : :
y ge-spting ' ure. Second, we are looking for one optimal solution,

conjecture that this bound s tight. not for all optimal solutions. Considering only the
] ] dominant regions reduces the computationsin step 3,
3.3 COmpUtathna/ Comp/eXIty of the EEC exponentially in the worst case.
and the EECH It is worth noting that partitiodI could be obtained
by intersecting the:omplet_e'v_isib_ility polygonsf
The reduction of 3-SAT to the EC and the ECH alsceach edge (the terstrong visibilityis used by Sher-
holds for the EEC and the EECH. In fact, both proofsmer (1992) with the same meaning). Complete visi-

construct polygons where each edge is observed eRllity polygons can be constructed in linear time for
tirely by at least one guard. polygons without holes (O’Rourke 1986), but unfor-

tunately, to the author’'s knowledge, no algorithm has
yet been presented for polygons with holes.

4 An algorithm for entire edge cover We now present the details of the algorithm and the
complexity analysis.

The entire visibility restriction allows us to discretize

the edge-guarding problem. In this section we de, ; iti

scribe an algorithm for both the EEC and the EECH.4'1 Step 1. Computing partition 1

Given a polygonP, the algorithm computes a set \yg givide P into maximal regionsZ; from which

of polygonal regions. A minimum set EE(P) o same set of edg&s is entirely visible, and la-

guards can be obtained, independently locating ongg| each regiorZ; with the setE;, using a visiting

guard anywhere in each region. A minor additionalgorithm.

makes the algorithm suitable for the “fortress” or| ot s discuss which lines are relevantrio Obvi-

external guarding problem, where the edges of thg g}y the lines supporting the edges are necessary.
holes are observed from an unboundedregion.  \yhen a guard crosses ling as shown in Fig. 11a
The algorithm consists of the following steps: the supported edge becomes entirely visible. Tak-

Step 1.Compute a partitiod of P into regionsz; NG into account occlusions requires other categories

such that: of lines. For instance, if a guard crosses lingin
Fig. 11b, vertexvx becomes visible. If there are no
— The same setfj = (Ep, Eq,... . E) of  other occlusions, as in Fig. 11b, the entire edige
edges is completely visible from all points of tg which the vertexy belongs becomes visible. Oth-
ZiVi. erwise, as in the case of Fig. 11c, the edge becomes

— The Z; are maximum regions, i.eEj # Ej  only partially visible. Thus line_y, is potentially rel-
for contiguous regions. evant torT.
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Fig. 11a—d.Examples of lines that change the visibility condition of an edge
Fig. 12.EdgeE; has three occlusions in the aspect relativ&to

For dealing with such cases, we compuieas ComputingIl’ is strictly related to the computation
a refinement of a more detailed partitidH, which  of the aspect graptof a set of polygons, a problem
also contains potentially relevant lines suchlas not discussed in the literature. The vertices of the
and auxiliary lines. These lines are notrelevardito aspect graph represent all the topologically distinct
but change the state of occlusion of an edge, as fariews, or aspects, of an object. The graph structure

instancel in Fig. 11d. of the aspect graph is the dual graph of the parti-
Before defining partitiolil’, let us first define thas-  tion of the viewing space into regions whose points
pectA(G) of a pointG belonging toP. share the same aspect. The edges of the graph repre-
sentvisual eventsthat is, qualitative or topological
A(G) = ((En, nn), (Ex, i), - .., (Eq, Ng)) , changes in the aspects of adjacent regions. Gualtieri

et al. (1989) give algorithms for computing aspect
graphs in two dimensions for one convex polygon
and in three dimensions for polyhedra, solids of revo-
86tion, and other curved objects. For further details,
the interested reader is referred to Gigus et al. (1991)

whereEy, Ey, ... , Eqare the edges fully or partially
visible from G, andny, ny, ... , nq are the numbers
of occlusions of these edges. For instance, the asp

relative to poiniG in Fig. 12 is:
e , and Plantinga and Dyer (1990).
AG) =((E,0), (E},3), (B 0, (En, 0), .. We now present the catalogue of lines that form par-
IT is defined as the partition that divid&sinto re- tition I1"and the associated visual events or changes
gionsZ/ suchthat: in the aspects. Aline is said to betiveif it contains
. , one or moreactive segmentgAn active segment is

— All points of Z; have the same aspekit the boundary between points whose aspects are dif-
— Zj are maximum regions, i.ef; 7 Aj for con-  tarent |t is not difficult to verify that all active lines

tiguous regions. are those that join two vertices in the cases given in
Clearly, to belong to the same region ®f is Table 1. The active segments are highlighted with
a necessary, but insufficient, condition for two pointsa thick line. The arrows mark thgositive crossing
to belong to the same regionOf directions The positive visual evenis the change
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Table1. Catalogue of

Active lines Positive visual event Negative visual event lines for partitionlT’
a v v Add (Ei, 0) Delete Ei, 0)
Ei
b Y n < n-1 n < n+1
Ei E Add (Ei, 0) Delete Ei, 0)
]
g Ni—ni—1 ni < ni+1
c v if  is already in the aspect:  if nj =1:
E nj e n+l; delete(Ej, 1);
' otherwise, addHj, 1) otherwise nj — n—1
E: n —ni-1 ni —ni+1
Y ] o . ) .
d if Ej is already in the aspect: if nj =2:
Ei N —n+2; delete(Ej, 2);
otherwise, addg;, 2) otherwise nj — ni—2
v E\/ \ if E is already in the aspect: if nj =1:
e 1}4 ] N o ni+1; delete(Ej, 1);
\ otherwise, addHj, 1) otherwise,n — ni—1
A — B means that B replaces A in the aspect.

of aspect of a point which crosses the active segc, vj). As is easily seen from Table 1, two condi-
ment along the positive direction; a similar definitiontions must be satisfied for a line to be active:
&olgassfeosr éhzrr:zggtlveea(\:/;]sLﬁ![he\;\:gt:;)étilgnEIEI}CI'%,emg_' The line must not cross the boundaryRoat both
we only indicate the visual event of the Iefgt seg- g‘ andvj_(e>|<.amples oLverti_cels:.theltgdo not pro-
ment, since the other is obtained by changing th(i Stécemaecrtrlb\-/iTneuss?lraee%nowennlt?rellgio P)'
subscripts. Observe that: - €0 e 9 ytor.
gondition 1 can be checked in constant time for

— The positive visual events of cases a and b alway Lo > o
produce full visibility of a new edge. €ach pair(v, vj). Condition 2 can be verified and

; o

— Positive visual events of cases ¢ and d produc%iﬁ:"h ?/Sg}éel’ssaelggqriﬂﬁ %?Zobnestfrﬁlégggmshgjéiglims
full visibility of a new edge only if the previous ; ) .
number of)(/)cclusions oftghis ed)glje is ong. graphof a set of line segments (O’Rourke 1987), i.e.,

_ . the graph whose edges represent visibility among
X'usrl:]zle?;/ems of case e only affect the OCCIUS'the vertices of the segments. The algorithm requires

O(n?) time for a topological sort of then(n — 1)) /2
ComputingIT requires the following substeps: slopes of the oriented lines joining each pair of ver-
tices (one line for each pair), and an angular sweep
2 that finds the first segment crossed (if any) in con-
1b. Constructindl . i .

. . - : stanttime for each oriented line. For our purposes we
1c. Refining[l"into IT with a visiting algorithm. need only perform a second angular sweep with re-
la. Computing the active segmenit®. find the ac- versed directions of the lines. We mark each active
tive lines we must consided(n?) pairs of vertices segment with the corresponding visual event, which

la. Computing the active segmentd tf



Fig. 13.Examples of vertices visible to each other that do
not produce active lines

can be computed in constant time. Th@gn?) ac-
tive segments are obtained@(n?) time.

1b. Constructing partition[1’. A data structure con-
taining vertices, edges, and regions of partitioh
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regions. Each region is marked with the set of fully
visible edges, and each edge with the positive cross-
ing directions, which indicate the region with a larger
set of fully visible edges.

Computing the aspect of the starting region is equiv-
alent to solving a 2D hidden line problem, and takes
O(n?) time (Preparata and Shamos 1985). The time
required for traversing the partition 8(p) (Baase
1988). The dimension of each aspeci&); there-
fore we can update the aspect and store the fully
visible edges at each boundary crossingQn)
time. Updating the structure of the partition takes
a constant time at each merging. The total time for
visiting IT’, computingIT, and storing all aspects is
O(n? + pn).

and pointers representing inclusion could be conThe overall time bound of step 1®&(n?+ plog p+
structed by Edelsbrunner’s (1987) classic algorithmpn).
in O(n*) time. The partition can also be constructed

by a plane sweep algorithm i®@(plog p) time,
where p is the number of vertices of the partition
(regions and edges also at¥ p)). This approach,

4.2 Step 2. Computing the dominant
regions

which makes the computation time of the algorithm

sensitive to the sizp of the output, has been applied

To findd dominant zones, we must compare the sets

by Gigus et al. (1991) for constructing a partition of Of fully visible edgesE; of each regior;. This pro-
the plane with segments of straight lines and conic<:€ss can be shortened if we observe that:

We refer the reader to the original paper for further; - A necessary condition for a regidh of I to be

detail. For each edge ai’ lying on an active seg-

ment, we store the positive direction and the visual

eventin the data structure.

The total time for computing partitioll’ is O(n® 4
plog p).

1c. ComputingIT’ from IT1. There can be adjacent
regions inI1" with the same set of completely visi-

dominantis thak; C E; for all the region<Z; ad-
jacent toZ;, or, in other words, all the positive
crossing directions of the edgesfflead to the
interior of the region (except for the edgeR)f

2. Allthe edges oZ; (except for the edges &) be-

ing due to cases a and b of Table 1, i.e., they lie
on lines supporting edges Bf condition 1 is also

ble edges. These regions are separated by: (1) lines g fficient.
of type e, which only affect the occlusion humbers

and (2) some lines of types ¢ and d. To obthin

The first statement is obvious. For the second, it is

these construction lines must be removed and theufficient to observe that, if the edges#flie on the

regions separated by these lines must be mergelihes supporting the edgés,, E, . .

While traversingIl’, partition IT is computed as
follows.

We start at an arbitrary region, compute its aspect,

and traversél’ with a depth-first search on the dual

., Ex, no other
region is able to observe this set of edges. Thus, to
find the dominant regions:

First visit all regions oflT and check condition
1 for selectingc candidate dominant regions in

graph. The aspect of each new region traversed is
obtained by updating the aspect of the previous re-
gion with the positive or negative visual events at
each boundary, according to the crossing direction.
Thus, at each boundary of the patrtition, we are able

O(p) time. Regions also satisfying condition 2
are immediately recognized as dominant.
PerformO(c?) comparisons i©O(nc) time to se-
lectd dominant zones.

to verify whether the visual event of an edge actuSteps 1 and 2 of the algorithm requi@(n? +
ally creates (or deletes) a fully visible edge. If this is plog p+ pn+nc?) time. In Fig. 14 we show both
not the case, we update the structure of the partitiopartitionIT’ andIl for a polygon with nine edges and
by deleting the edge and merging the two adjacerne hole and the five resulting dominant regions.
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heuristic, which selects the region covering the
largest number of uncovered edges each time.
A straightforward implementation of this algorithm

is O(n p?). Although its performance cannot be guar-
(@ anteed to be data independent, it does not depends
on the number of edges. Let GEE®(P) be the
number of regions obtained by the greedy algorithm
and letr be the largest number of edges observed
by a dominant region oP. It can be shown that
(Nemhauser and Wolsey (1988):

GEE®(P)/GEE(P) < 1+Ig(r)

(b) Observe that could be small even for very large val-
ues ofn.

5 The case of exterior visibility
Fig. 14a,b.PartitionIT’ (a) and partitionIT (b) of a poly-
gon. The active segments BF aresolid; the remaining .. .
parts of the active lines arotted Five dominant zones| A small addition makes Table 1 also fit for the case

result. Three of theniZs, Z3, Zs) are immediately iden- where only the polygonal holes are left and the re-
tified by the positive crossing directions of the edges gion where the guards can be located is unbounded.
This has been called the fortress problem when only

one polygon is present (O'Rourke 1987). In this
case, the active segments could be unbounded. In-
specting Table 1, we can verify that this only affects
case d. If the right active segment is unbounded, the
positive and negative visual events diminish to the

An optimal (or minimum) solution is a set of domi- ; ! .
nant regions that coveBswith the minimum number P2t affectings;. Thus, an enhanced table including
of members. This is an instance of the WeII—knownthe new entry d’ shown in Fig. 15 also holds for the

set-covering problem. In general, given a Seind caS(fefof e>ger|orV|S|b|I|ty. The rest of the algorithm is
a number of subsets, an optimal cover is a set of subtn@ ected.

sets with a uniort that minimizes the sum of the

costs of the subsets. In our case, all costs are equg. . .

The corresponding decision problem (is there a covd? Summary and discussion

with k subsets or less?) is NP-complete (Parker and

Rardin 1988). We have proposed and explored the problem of
Numerous practical situations have been modeled a®vering the edges of a polygon with a minimum
set-covering problems, and a number of algorithmset of guards as an alternative to the classic art
for set covering have been presented (see for irgallery problem, which requires complete interior
stance Salkin and Mathur 1989). When, as in oucover. The minimum edge and interior covers have
case, only one minimal solution is required, muchbeen compared for a given polygon. Even though
can be pruned. This is, for instance, the case of aa minimum set of wall guards could also cover the
algorithm developed for the minimization of switch- interior, for polygons with holes, the interior guards
ing functions; details can be found in Muroga (1979),could beO(n) times the wall guards. For polygons
and the complexity O(n2%)) has been determined without holes, we conjecture that interior guards are
by Laurentini (1996). at most twice the number of the edge guards. No sim-
A nearly optimal solution obtained with a polynomialple rule seems to exist for obtaining a minimum set
selection algorithm could be an interesting alternaef interior guards starting from a minimum set of
tive. Such a solution can be obtained with a greedgdge guards or vice versa.

4.3 Step 3. Finding an optimal solution
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Positive visual event Negative visual event
d’ v ni —ni—1 n—ni+l

Ei

15
Z3
4
zz| ()
Z4

Z3 p

16

Fig. 15. Table 1 fits the case of exterior visibility of polygons with the addition of this entry

Fig. 16a.There are infinite pairs of maximum regions @nd %, depending on poinp. Region 2 is necessary for covering
E; b a solution for the ECH is obtained by locating two guards in the maximum regipaad 2 (or Z and Z;)

The worst-case numbers of guards have been fourld practice, placing visual sensors is likely to have
to be equal for edge and interior cover, and the edgde satisfy additional constraints. A feature of the al-
covering problem to be NP-hard for polygons withgorithm described is that it can easily be modified
and without holes. to take geometrical restrictions into account. For in-
For the edge-covering problem, a restriction hastance, a maximum distance and a minimum distance
been proposed that makes practical sense. The efiem each point observed could be required. This
tire edge-covering problem requires each edge to beonstrains the guards required for observing each
entirely visible from at least one guard. This prob-edge into a region whose boundary lines can be in-
lem is also NP-hard. For polygons without holes, theserted intoIT for obtaining a modified partitioml*
worst-case number of guards|is/3], as for the un- of P.

restricted problem. For polygons with one hole, weWe have observed that simple ways for deriving in-
have found that at most(n+ 2)/3] guards are al- ternal guards from wall guards do not seem to exist.
ways sufficient and sometimes required. For mord his suggests some hope for solving for edge cover-
than one hole, we conjecturethati®+h)/3] isthe ing some of the problems unsolved for interior cov-
tight bound. ering. Many lines of research could be explored for
We have described an algorithm for the entire edgedge covering, such as:

covering problem. It computes a set of polygonal re-

gions where the guards of a minimum set can be— Attempting to construct exact algorithms, even if
independently located. The algorithm is also suit- they become exponential in the worst case.

able for the fortress or external guarding problem.— Attempting to construct approximate algorithms
The last step of the algorithm is an instance of the with guaranteed performance.

set-covering problem, exponential in the worst case.— Looking for lower bounds for the edge guards of
A greedy selection supplies nearly optimal solutions a given polygon. This would enable us to eval-
in polynomial time within a factor dependent only  uate the quality of an approximate solution for
on the logarithm of the largest number of edges ob- a given polygon. It could be satisfactory even if
served by a guard, and this factor is independent it is supplied by approximate algorithms with no
of n. guaranteed performance.
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