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A number of promising applications have renewed researchers’ interest in the anal-
ysis of human movements. In general, motion capture could play an important role
in many areas that require storing, analyzing, or reproducing the motion of human
beings. Current motion capture techniques are based on intrusive sensory systems,
which might be disturbing or impossible to apply in several application areas. In this
paper we present a novel non-intrusive technique able to reconstruct unconstrained
motion. From multiple-viewpoint images taken with an ordinary camera a 3D re-
construction is computed with a technique known as volume intersection. Motion
data are acquired by fitting a model of the performer to the reconstructed volume.
Data about the reconstruction accuracy achievable with our technique in a virtual
environment are also provided.c© 2001 Academic Press
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1. INTRODUCTION

The interest in the analysis of human motion is motivated both by the recent technical
improvements in real-time signal processing hardware and by a variety of new promising
application areas. Motion capture (MC) plays an important role since it enables one to
store, reproduce, and analyze the motion of human beings. Several applications involving
MC already exist, and many others are foreseen. Among them are virtual reality (charac-
ter animation, games, interactive virtual worlds), sport performance analysis and athlete
training, the clinical study of orthopedic patients, computer-driven rehabilitation environ-
ments, choreography, smart surveillance systems, gesture-driven user interfaces, and video
annotation (see [1, 9]).
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The commercial MC equipment existing at present is based on intrusive sensory systems
which exploit either of two technologies: magnetic and optical tracking. Both techniques
require more or less bulky objects to be attached to the body of the performer which might
disturb the subject and more or less affect his or her gestures. For some applications, such
as analyzing sport performances, this could be a serious drawback. Also observe that both
techniques supply precise position data only for a limited number of points. These points,
in the most favorable case, are located on the moving skin of the subject several centimeters
from the feature being tracked, usually joints. These data are suitable for driving the realistic
motion of a 3D character, but could be insufficient for working out with precision the 3D
posture and motion of the body, as required for biomechanics and sport studies. Last, placing
objects on the body is out of the question for applications such as area surveillance.

A number of nonintrusive MC techniques have been reported in the literature. These
approaches can be model based or not. In the latter case, it is typically more difficult
to establish feature correspondence between consecutive frames. On the contrary, explicit
shape modeling can improve the recovery of the body structure, that is labeling and tracking
of body parts. Also, one can take advantage of the a priori knowledge about human motion
which can be exploited to enhance the motion analysis process.

In model-based approaches the human body is represented with some kind of model
whose 3D posture and motion are matched with the physical data. Stick articulated models,
as in [13], idealize the human skeleton. Ellipsoidal blobs [5, 6], cylinders and generalized
cylinders [15], deformed superquadrics [10], geons [3], and parametric solids and finite ele-
ments [14] have been used to build models which mimic more or less closely the human body.

The proposed approaches also differ on the dimensionality of the analyzed space (2D or
3D), on the sources of information, and on the approach to motion recovery. In [13] a system
which is able to recover the posture of a human body performing gymnastic movements
from a monocular view is presented. In [15] the type of motion analyzed is restricted to the
walking cycle. Moving parts are detected by applying a change detection algorithm followed
by binary image operations. A similar approach is presented in [17]. Both edge and region
information are used to determine the posture of the model together with camera orientation
by means of an iterated Kalman filter. The Pfinder system [18] tracks body features such
as head, hands, and body. Different body parts and the background scene are described in
statistical terms by a spatial and color distribution. Analysis is reinforced by means of a pre-
dictive Kalman filter. The approach reported in [2], which exploits 2D projection of blobs to
develop a real-time system to track arms and head from two different views using nonlinear
estimation techniques, is similar. The paper [8] describes a batch framework based on 2D
measurements from a single view. The 3D pose reconstruction process exploits several con-
straints, including kinematic constraints, joint angle limits, dynamic smoothing, and 3D key
frames specified by the user. In [10] four orthogonal views are used to track the whole body
of a person. Pose recovery and tracking is obtained by applying a prediction, synthesis, im-
age analysis, and state estimation chain. In [5] the performer is tracked using a region-based
motion estimation framework and the model is fitted to the images by means of a Newton–
Raphson style minimization. Another recent approach, based on annealed particle filtering,
which exploits both edge and silhouette information extracted from multiple cameras, is pre-
sented in [7]. Comprehensive references on many other techniques can be found in [1, 9, 15].

The purpose of this paper is to develop a sufficiently simple and robust alternative ap-
proach to allow the implementation of practical equipment. Our approach is based on mul-
tiple 2D silhouettes of the body extracted from 2D images and can be outlined as follows:
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• Different cameras are used to obtain views of a human body. From each image a 2D
silhouette of the performer is extracted.
• A volumetric description of the object is recovered by intersecting the solid cones

obtained by back-projecting from each viewpoint the corresponding silhouette (volume
intersection, VI). The final voxel representation can be obtained at different resolutions.
• The posture is recovered by fitting a model of the human body to the reconstructed

volume. This is obtained by minimizing a suitable distance function between the volume
and the model with a search through the space of pose parameters.

Fitting a model of the human body to the volume reconstructed by VI is in principle equal
to fitting in 2D the projections of the model to the various silhouettes. However, fitting in 3D
allows a better understanding of the problems due to incorrect volumetric reconstruction
(see Section 2). In addition, fitting in 2D would require one to project many times the
boundary of the 3D model, while reconstruction should be computed only once for each
frame.

The organization of the paper is as follows: Section 2 describes the multiple silhouettes
approach, Section 3 outlines the different components of our MC system, Section 4 cov-
ers the posture reconstruction, Section 5 reports the accuracy of the overall process, and
Section 6 contains concluding remarks and outlines future developments.

2. THE MULTIPLE SILHOUETTE APPROACH

Reconstructing 3D shapes from 2D silhouettes is a popular approach in computer vision.
A two dimensional silhouette is the contour of the projection on the view plane of a 3D
object. The VI technique (Fig. 1) recovers a volumetric descriptionR of the objectO from
different silhouettes by intersecting the solid cones obtained by back-projecting from each
viewpoint the corresponding silhouette [12, 20].R is a bounding volume which more or
less closely approximatesO, depending on the viewpoints and the object itself.

The rationale of the VI approach’s quality is that silhouettes can usually be obtained with
simple and robust algorithms from intensity images. In addition, VI does not compel us to
find correspondences between multiple images and above all is a not-intrusive technique.

FIG. 1. The VI technique.
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FIG. 2. Phantom volumes with two cameras.

However, using VI for reconstructing the human body requires us to face several difficulties.
Bad placement and an insufficient number of cameras could produce bulges which affect
the correct placement of the model. In addition, because of the complex shape of the
human body, this technique can produce phantom volumes, that is unconnected volumes
or protrusions not corresponding to real parts of the body, as can be seen in Fig. 2. For
each view, two silhouettes are generated by two objects but VI reconstructs two more
objects and we are not able to tell the phantoms from the real objects without further
information.

Therefore, due to the complex structure of the human body, an adequate number of
cameras must be used and a careful positioning of the view points must be performed.
However, in model-based motion capture the “phantom” problem is by far less severe,
since exploiting continuity is a powerful tool for fitting the “true” volumes in ambiguous
cases.

3. THE MOTION CAPTURE SYSTEM

This section outlines the different components of our MC system. First we describe the
model of the human body used for pose recovery. The Cameras and Silhouettes section
covers the problems of modeling the cameras and of extracting silhouettes from image
planes. Then the VI algorithm is described in detail together with the posture reconstruction
algorithm.

3.1. The Model

Our model consists of two components: a representation of the skeleton and a repre-
sentation of the body surrounding it. The following sections describe those components in
details.

3.1.1. The skeleton.The skeleton has 15 segments which are connected by spherical
joints. The model is composed by the following body parts: head, trunk, pelvis, upper arms,
forearms, hands, thighs, shins, and feet.

Skeleton segments are organized in a tree whose root is located in the pelvis (see
Fig. 3). Each segment inherits the transformation of its parent. Some constraints have been
introduced to model the structure of human motion according to the anatomy and physics
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FIG. 3. The human body model.

of human body motion. Elbows and knees provide only one degree of freedom (DOF),
ankles cannot roll, and, considering as an approximation that the forearm and the hand are
rigidly connected, wrists have no DOFs. The range of values spanned by the DOFs is also
constrained by reasonable bounds. The total number of DOFs of the model, including the
(x, y, z)position of the radix of the tree, is 32.

3.1.2. The surface.The surface is defined through a triangular mesh consisting of more
than 600 triangles depicted in Fig. 4. The complete set of shape parameters can be arranged
to match the characteristics of the real performer. This surface representation has a medium
level of accuracy.

3.2. Cameras and Silhouettes

The system must be accurately calibrated to ensure correct correspondence between the
visual cone of each camera and the 3D common world; this is done using Tsai’s method
[16], which requires an accurate identification of 3D reference points to obtain all the
camera parameters. Reference points are obtained by means of a particular calibration
object (Fig. 5) that is a not-deformable structure containing a grid of squares of known

FIG. 4. Model surface.
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FIG. 5. Image of the calibration object.

position and dimension, whose centers are the reference points. The squares have different
colors and are arranged on patterns that allow the calibration process to clearly identify
the face of the object they belong to and thus to obtain the complete 3D coordinates of the
reference points.

Our approach to silhouette extraction is mainly based on the ideas presented in [18, 19].
Since we use stationary cameras, the silhouette extraction system processes a scene that
consists of a static background and one single moving person. Thus we define a model of
the background scene and compare it with the current frame. The scene on the background
is modeled as a texture surface, every point of which contains a mean value color and a
distribution around that mean. The rationale of this approach is to reduce the effect of noise
of the images acquired with a CCD camera. The initial model can be computed with a short
sequence (about 200 frames) of the empty scene.

The color data associated to each pixel of the scene model are represented inYUVformat.
The advantage of this representation is thatUVare less sensitive to changes in light intensity
and differences between shadowed and not shadowed areas appear almost only in theY
component.

To extract the silhouette of the performer from the current frame, each pixel of the frame is
thresholded against the expected value, given by the corresponding pixel of the scene model.
Since noise can be different for each pixel, a fixed threshold would be an exceedingly rough
approximation. Hence, a different threshold for each pixel is evaluated in the preprocessing
step and two values are associated to each pixel of the scene model: the meanµ color and
the threshold for each component given by

Tc(x, y) = αtol ·max(nc,max− µc, µc − nc,min) c = Y,U,V,

wherenc,max andnc,min are the minimal and maximal value of the componentc at the point
(x, y) andαtol is a tolerance factor withαtol < 1. For each component of pixelp we evaluate
the inequality:

|pc − µc| < Tc(x, y). (1)

If the inequality is false for both theU andV components or false forY and at least one
of theUV components, the pixel is assigned to the silhouette since its color is significantly
different from the background. To compensate for changes in lighting, if the pixel belongs
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FIG. 6. (a–d) The scene model, a frame of the sequence, and the extracted silhouette.

to the background the pixel statistic is updated using a simple adaptive filter,

µt = α · p+ (1− α) · µt−1,

where t refers to the current frame andt – 1 to the previous one. In order to avoid the
identification of cast shadows as part of the silhouette we observe that there is a potential
shadow only if the pixel has a similar color but is darker than the expected value. In this
case, we consider a second threshold forY, given by

Ts(x, y) = αshadow· TY(x, y),

whereαshadow> 1, usually set as 1.2; if inequality (1) for theY component computed using
Ts is again false the pixel is assigned to the silhouette.

After the silhouette identification process we apply a postprocessing phase to remove
spurious features or to fill undesired holes in the silhouette.

In Fig. 6a the scene model built for one of the cameras used in the test sequence is
depicted, while Fig. 6b shows one of the frames of the sequence in which a person moves
into the active area. Figures 6c and 6d show the result of the silhouette extraction process.

3.3. The Volume Intersection Algorithm

The VI algorithm works at various resolutions and outputs the boundary voxels of the
reconstructed volumeR. The running time of the algorithm depends on the number of
boundary voxels and thus approximately on the square of the linear resolution.

The outline of the algorithm is as follows:

• a 3D pointP is aninternal point,belonging toR, if each projection ofP in an image
plane (according to the camera model) belongs to the corresponding silhouette;
• a voxel is aboundary voxelif some, but not all, of its vertices belong toR;
• after finding with a simple heuristic one boundary voxel, the algorithms checks the

six adjacent voxels and selects as boundary voxel those which share with the first voxel a
boundary face, that is a face whose vertices are not all interior or all exterior.

By recursively applying these rules, all the boundary voxels are found.



86 BOTTINO AND LAURENTINI

4. DETERMINING THE POSTURE OF THE MODEL

Pose recovery is based on a search through the 32 dimensional space of pose parameters
and implies finding the pose of the model which more closely approximates the actual
appearance of the moving subject. The approximation accuracy is given by a similarity
function between the current model pose and the volumeR obtained by VI. This function
is obtained by summing the squared distance between each voxel centerCi to the closest
segment of the model.

Let ℘ be a vector with 32 parameters required to specify a posture anddj (Ci ) be the
distance between the voxel centerCi and the surface of the segmentj . LetSj , j = 1, . . . ,15,
be the set of voxel centers closest to segmentj . We define the distance function as:

D(℘, R) =
15∑
j=1

w j ·
∑
∀Ci∈Sj

d2
j (Ci ).

The contribution of each segment toD(℘, R) depends on the number of voxels assigned
to the segment and on the dimension of the corresponding part of the body. The purpose
of the weightswi is to enhance the contribution of the smallest parts of the model in order
to obtain similar posture errors for trunk and limbs. Convenient values of the weights have
been experimentally found.

To minimizeD(℘, R) we use the gradient method. The process is stopped when1D(℘, R)
is lower than a predefined threshold.

In order to reduce the number of computations required, each segment is approximated at
the first stage of the reconstruction algorithm by an oriented bounding ellipsoid (OBE; see
Fig. 7). The size of the axes of each OBE is equal to the dimensions of the boundary box of
the corresponding segment. The posture recovery process is a two-stage process: a coarser
first step in which the OBEs are fitted to the reconstructed volume and a finer second step
in which fitting is applied to the real model.

To recover the motion of the model, the above procedure is applied to each frame of the
motion sequence. An exception made for the first time, the starting position of the model is
that obtained for the previous frame, since each time the model is close to its final position,
the computation of the new posture requires relatively few steps. In addition, some sort of

FIG. 7. Oriented bounding ellipsoid (OBE) of the trunk.
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implicit filtering takes place, since possible local minima of the distance function due to
phantom volumes are avoided.

5. EXPERIMENTAL RESULTS

The experimental work has been divided into two phases.
First, the system has been tested in a virtual environment in order to investigate the preci-

sion of both 3D direct reconstruction and model-based posture and motion identification for
several postures of the body and various resolutions. Obviously, evaluating the precision of
reconstruction is much easier in the virtual world than in the real world. In fact we know a
priori the exact posture of the body, and the model used for fitting the reconstructed volume
is the same model which produces the silhouettes.

Second, we applied the proposed approach to real image sequences.

5.1. Accuracy in a Virtual Environment

We define the posture error as the average of the distance between corresponding vertices
of the reference model and the reconstructed model. In order to cover many significant pos-
tures and typical movements, we evaluated the reconstruction accuracy for several different
image sequences (see Fig. 8):

• a straight walk, in which the dummy performs a full gait cycle (two steps of 1 m
each) recorded in 42 frames
• a circular walk on a path 2 m across (80 frames)
• a run (42 frames)
• a gymnastic movement (40 frames)

FIG. 8. (a–d) Linear walk, circular walk, run, and gymnastic sequence.
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TABLE 1

Summary Results for Linear Walk Sequence

Voxel Mean error Max error Min. error St. Dev.

25 17.05 21.54 12.61 2.37
35 16.31 23.25 9.91 3.23
45 18.69 23.93 11.60 3.36

TABLE 2

Summary Results for Circular Walk Sequence

Voxel Mean error Max error Min. error St. Dev.

25 22.54 34.18 13.51 3.99
35 21.67 29.68 12.07 3.91
45 22.90 33.55 12.64 3.69

TABLE 3

Summary Results for Run Sequence

Voxel Mean error Max error Min. error St. Dev.

25 24.34 37.22 16.37 5.03
35 18.44 25.57 9.20 3.79
45 22.10 31.61 12.32 4.55

TABLE 4

Summary Results for Gymnastic Sequence

Voxel Mean error Max error Min. error St. Dev.

25 18.57 29.42 12.22 1.28
35 17.93 32.65 11.65 3.97
45 18.57 30.90 9.52 4.42

DIAGRAM 1. Average posture error in mm for linear walk sequence.
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DIAGRAM 2. Average posture error in mm for circular walk sequence.

To evaluate how resolution affects posture precision we have reconstructed the volume
using three different voxel sizes (45, 35, and 25 mm). Five cameras have been used for all
the tests (four cameras located in a horizontal plane, 1.5 m above the floor, and the fifth
shooting the dummy from above). The active area is 4× 4 m wide.

The model used to create the motion sequences is 1.80 m high. The results obtained are
summarized in Tables 1 to 3, where we report the posture errors averaged over all the frames
of the sequences. Diagrams 1 to 4 report the average posture errors for each frame of the
sequences, expressed in mm, for decreasing voxel size. The best average error obtained
for the different sequences is between 16 and 21 mm, that is almost 1% of the body size.
The best reconstruction has been achieved for all the sequences using voxels of 35 mm. The
diagrams also show that the accuracy of the reconstruction is relatively unaffected by the
voxel size. For completeness, in Table 5 we also present the angular errors averaged over
all the frames for the test sequences.

These results are similar to those obtained with a simpler model, consisting of cylinders
of various widths [4].

5.2. Recovering Model Postures from Real Image Sequences

The video sequences used in our tests have been acquired in two different environments
with different background and lighting conditions. This also helped to improve the robust-
ness of the various components by providing them with a wide range of input data. We

DIAGRAM 3. Average posture error in mm for run sequence.
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DIAGRAM 4. Average posture error in mm for gymnastic sequence.

have used five video cameras to record five different views of the performer. The sequences
have been synchronized by flashing a light at the outset and detecting for each sequence
the starting video frame containing the flash. The actor performed freely in the work area
since we wanted to test our approach for real unconstrained motion.

To avoid the burden of measuring the characteristics of the real performer, we developed
an automatic measurement process to calibrate the model by means of an initialization stage
which exploits both known poses and known movements. Similar approaches can be found
in [10, 11, 18].

In the virtual environment we found that placing a camera over the head of the performer
improved the quality of the volume reconstruction. However, in both the test environments
this was not possible due to practical problems. Despite this drawback, the reconstructed
sequences look satisfactory when seen at real frame rate (25 frame/s). Results of the re-
construction process can be seen in Fig. 10, which shows the composition of the real and
virtual models (Fig. 9 contains the same frames with only the real performer). In Fig. 11
we show a comparison between the original image, the reconstructed voxel model (with
voxels of 50 mm), and the parametrical shape model for several frames of a bow sequence
reconstructed using five cameras.

TABLE 5

Angular Errors in Degrees Averaged over all the Frames for

Different Sequences and Different Voxel Sizes

Sequence Mean Min Max St. Dev

Walk Vox.25 1.56 0.46 4.97 1.01
Walk Vox.35 1.54 0.72 5.11 0.97
Walk Vox.45 1.75 0.54 5.72 1.13
Circular Vox.25 1.66 0.90 2.58 0.58
Circular Vox.35 1.58 0.80 2.53 0.51
Circular Vox.45 1.75 0.81 2.62 0.57
Run Vox.25 1.63 0.86 3.24 0.67
Run Vox.35 1.26 0.66 2.31 0.48
Run Vox.45 1.44 0.91 2.31 0.40
Gym Vox.25 3.96 0.73 10.91 3.71
Gym Vox.35 4.01 0.83 9.85 3.37
Gym Vox.45 4.29 0.76 10.52 3.70
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FIG. 9. Outtakes from camera 2.

FIG. 10. Reconstructed postures.
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FIG. 11. Original images, reconstructed voxel models, and parameterized shape models for a bow sequence.

DIAGRAM 5. Average posture difference for reconstruction of real image sequences using 30 and 50 mm
voxels.

DIAGRAM 6. Average reconstruction time of real image sequences using 30, 40, and 50 mm voxels.
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TABLE 6

Summary Results of

Reconstruction Time

Voxel Mean rec. time (s)

30 117.32
40 62.46
50 44.35

To evaluate how different resolutions affect pose reconstruction, we present the differ-
ence between the postures obtained using voxels of 30 and 50 mm. As can be seen in
Diagram 5, the mean difference is relatively low (its mean value for the first 55 frames is
8.9 mm).

Although real time is not one of the goals of this work, we also computed the mean
reconstruction time per frame for different resolutions. The system has been tested on a
500 MHz Pentium. Results are reported in Diagram 6 and summarized in Table 6. As can
be seen the mean reconstruction time varies approximately according to the square of the
linear resolution, going from 117 s for voxels of 30 mm to 44 s for voxels of 50 mm. Also,
it should be noted that the reconstruction time varies greatly from frame to frame, since the
number of iterations of the positioning algorithm is not constant.

6. CONCLUSIONS AND FUTURE WORKS

We have demonstrated an approach able to reconstruct unconstrained human motion in
realistic situations without markers or external devices attached to the body of the subject.
The approach presented is based on multiple 2D silhouettes of the body extracted from 2D
images. From each set of silhouettes the performer can be reconstructed with a technique
known as volume intersection. Posture recovery is then obtained by fitting a model of the
human body to the reconstructed volume.

A quantitative comparison between estimated and true pose is important to evaluate
the proposed system. Experiments in a virtual environment proved that the reconstruction
accuracy for different motion sequences is between 1.6 and 2.1 cm. (about 1% of the
reference object). Although no firm statements about the accuracy of reconstruction can be
made for real sequences, the perceived accuracy looks satisfactory for most of the target
applications of the system. Another interesting result is that the precision is relatively
unaffected by reconstructing the 3D volumes at low resolution for real images also. This
benefits the amount of computation required and could be important in cases where a wide
area is observed.

It would be interesting to compare the reconstruction precision of our technique (even
if obtained in a highly artificial condition) with that of other motion capture techniques.
However, this does not appear to be an easy task. One reason is that, as far as we know, no
comparable data are available. For intrusive MC approaches, optical markers are tracked
with millimetric precision, and similar data are claimed for magnetic tracking. However,
no precision data are supplied about the body of the performer.

As far as non-intrusive approaches are concerned, several have been presented and demon-
strated with real images, but usually no precision data are available. Clearly, the reason is
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that this would require knowing the true posture. The only attempt to perform precise
error analysis on computer vision based motion capture studies known to the authors is
described in [2]. However, their measurements only refer to the position of a hand moving
along a straight trajectory of known dimension and are not easily comparable with our
results.

In order to improve our technique, we are planning to consider several issues:

• Constrained motion does not actually include self-intersection avoidance, which
might be useful for pruning incorrect poses during the pose reconstruction process.
• Dynamic filtering (such as Kalman filtering) can remove noisy components of the

recovered sequence and prediction can be used to boost the reconstruction process.
• Finally, we plan to avoid the limitation of using stationary cameras and having a

static background.

REFERENCES

1. J. K. Aggarwal and Q. Cai, Human motion analysis: a review,Comput. Vision Image Understanding73, 1999,
428–440, doi: cviu.1998.0744.

2. A. Azarbayejani and A. Pentland, Real-time self-calibrating stereo person tracking using 3D shape estimation
from blob features, inProc. of International Conf. on PR, Vienna, 1996.

3. I. Biederman, Recognition-by-components: A theory of human image understanding,Psych. Rev.94, 1987,
115–147.

4. A. Bottino, A. Laurentini, and P. Zuccone, Toward non-intrusive motion capture, inProc. of Third Asian Conf.
on Computer Vision, Hong Kong, China (1), 1998, pp. 417–423.

5. C. Bregler and J. Malik, Tracking people with twists and exponential maps, inProc. IEEE Conf. on CVPR,
1998, pp. 8–15.

6. G. K. M. Cheung, T. Kanade, J.-Y. Bouguet, and M. Holler, A real time system for robust 3D voxel recon-
struction of human motions, inProc. IEEE Conf on CVPR, 2000, pp. 714–720.

7. J. Deutscher, A. Blake, and I. Reid, Articulated body motion capture by annealed particle filtering,Proc. IEEE
Conf. on CVPR, 2000, pp. 126–133.

8. D. E. Di Franco, T. Cham, and J. M. Rehg,Recovery of 3D Articulated Motion from 2D Correspondences,
Technical Report Series, CRL 99/7, Cambridge Research Laboratory, 1999.

9. D. M. Gavrila, The visual analysis of human movement: A survey,Comput. Vision Image Understanding73,
1999, 82–98, doi: cviu.1998.0716.

10. D. M. Gavrila and L. S. Davis, 3D Model-based tracking and recognition of human movement: a multi-view
approach, inProc. IEEE CS Conf. on CVPR, San Francisco, CA, 1996, pp. 73–80.

11. I. Kakadiaris and D. Metaxas, 3D Human body model acquisition from multiple views, inProc. of the Fifth
International Conference on Computer Vision, Boston, 1995, pp. 618–623.

12. A. Laurentini, How far 3D shapes can be understood from 2D silhouettes,IEEE Trans. Pattern Anal. Mach.
Intell. 17, 1995, 188–195.

13. M. K. Leung and Y. Yang, First sight: a human body outline labeling system,IEEE Trans. Pattern Anal. Mach.
Intell. 17, 1995, 359–377.

14. A. Pentland and S. Sclaroff, Closed-form solutions for physically based shape modeling and recognition,
IEEE Trans. Pattern Anal. Mach. Intell.13, 1991, 715–729.

15. K. Rohr, Toward model-based recognition of human movements in image sequences,CVGIP: Image Under-
standing59, 1994, 94–115.



RECONSTRUCTION OF HUMAN MOVEMENT 95

16. R. Y. Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using
off-the-shelf TV cameras and lenses,IEEE J. Robotics Automation3, 1987, 323–344.

17. S. Wachter and H.-H. Nagel, Tracking persons in monocular image sequences,Comput. Vision Image Under-
standing74, 1999, 174–192, doi: cviu.1999.0758.

18. C. Wren and A. Pentland, Dynamic models of human motion, in “Proc. of Third IEEE International Conf. on
Automatic Face and Gesture Recognition,” Nara, Japan, 1998, pp. 22–27.

19. M. Yamada, E. Kazuyuki, and J. Ohya, A new robust real-time method for extracting human silhouettes from
color images, inProc. of Third IEEE International Conf. on Automatic Face and Gesture Recognition, Nara,
Japan, 1998, pp. 528–553.

20. J. Zheng, Acquiring 3D models from sequences of contours.IEEE Trans. Pattern Anal. Mach. Intell.16, 1994,
163–177.


	1. INTRODUCTION
	2. THE MULTIPLE SILHOUETTE APPROACH
	FIG. 1.
	FIG. 2.

	3. THE MOTION CAPTURE SYSTEM
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.

	4. DETERMINING THE POSTURE OF THE MODEL
	FIG. 7.

	5. EXPERIMENTAL RESULTS
	FIG. 8.
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	FIG. 9.
	FIG. 10.
	FIG. 11.
	TABLE 6

	6. CONCLUSIONS AND FUTURE WORKS
	REFERENCES

